

DEMOTE: Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes

NeurIPS 2023 (Spotlight)

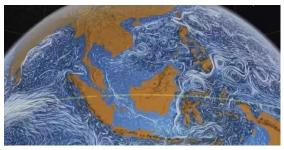
Zheng Wang*, Shikai Fang*, Shibo Li, Shandian Zhe Presenter: Shikai Fang April 2024 @ TensorNet Reading Group, Mila



• Multi-dim array for **high-order structural** data

Entry: (index1, index2...)-> value \Leftrightarrow Interaction of multiple objects

Climate System



(region, topography, weather)

Online Ads

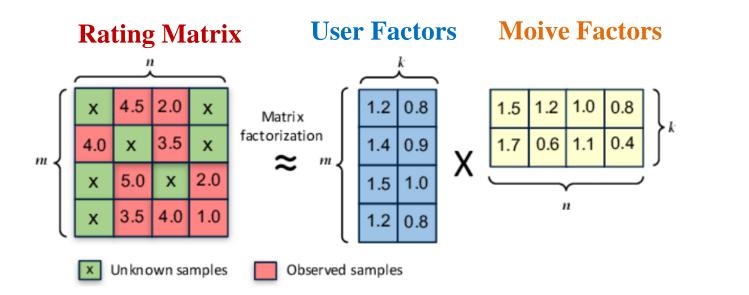
(user, movie, site, device)

Traffic Flow

(city, road, population, period)

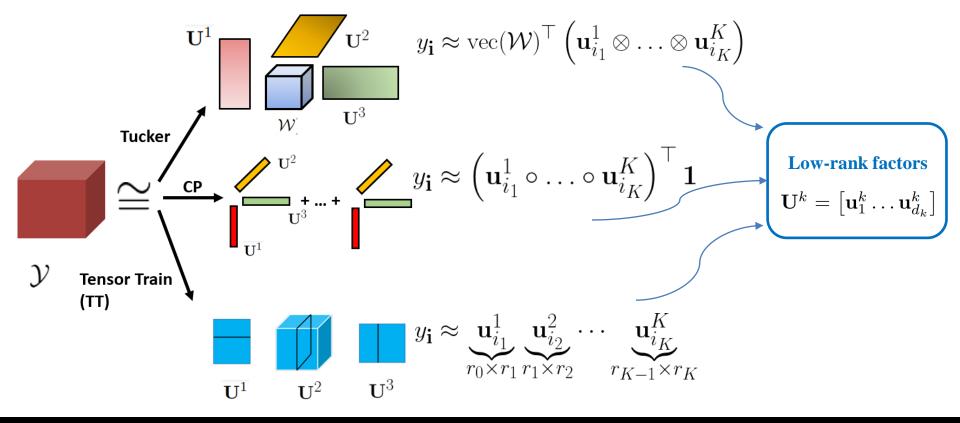
Tensor Decomposition

- Learn low-rank factors(embeddings) of high-order tensor
- 2-D case: Collaborative Filterling (Matrix Factorization)



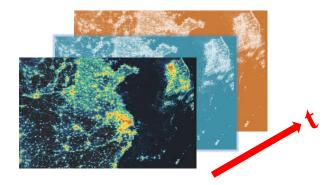
NETFLIX

CP / Tucker / TT Decomposition

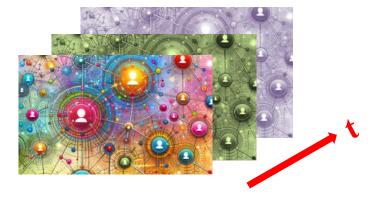


Temporal Tensor Data

Tensor-valued time series



(region, site, weather) × time



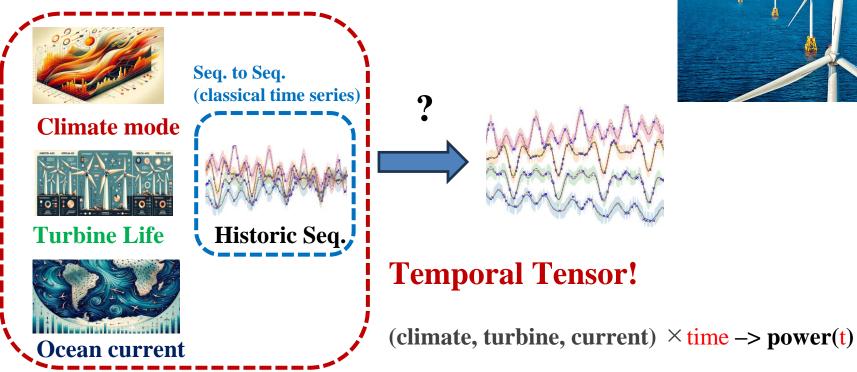
(user, user, location, message) × time

Tensor structure are evolving through time!

Example: Wind Power Prediction

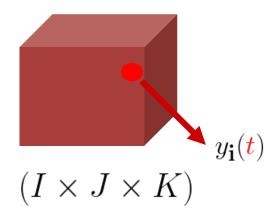
Tensor-valued time series:

UNIVERSITY

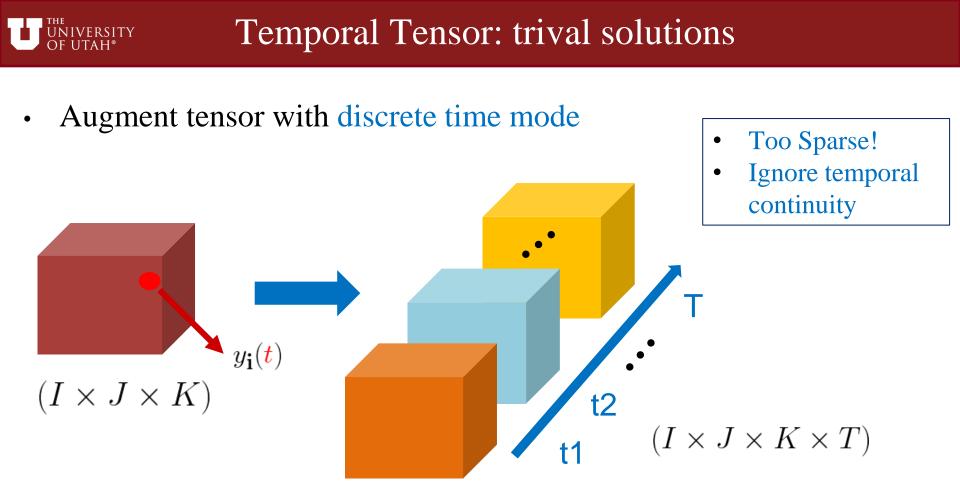


Temporal Tensor: trival solutions

• Drop timestamps / Aggregate over time?



--losing temporal info



Most existing work[1][2][3]:

Evolving interaction weights + Static factors

$$y_{\mathbf{i}}(t) \approx \mathbf{w}(t)^{\top} \left(\mathbf{u}_{i_1}^1 \circ \ldots \circ \mathbf{u}_{i_K}^K \right)$$

- Easy to inference, but **over-simplified**!
- Evolving factors dominate in many cases

Zhang, Yanqing, et al. "Dynamic tensor recommender systems." *The Journal of Machine Learning Research* 22.1 (2021): 3032-3066.
 Fang, Shikai, et al. "Bayesian Continuous-Time Tucker Decomposition." *International Conference on Machine Learning*. PMLR, 2022.
 Li, Shibo, et al.. "Decomposing Temporal High-Order Interactions via Latent ODEs." *International Conference on Machine Learning*. PMLR, 2022.

Motivation of our work

Goal: Learning dynamic factor trajectories!

$$y_{\mathbf{i}}(t) \approx g\left(\mathbf{u}_{i_1}^1(t), \mathbf{u}_{i_2}^2(t) \dots, \mathbf{u}_{i_K}^K(t)\right)$$

Time-varing represent. of real-world object!

Goal: Learning dynamic factor trajectories!

$$y_{\mathbf{i}}(t) \approx g\left(\mathbf{u}_{i_{1}}^{1}(t), \mathbf{u}_{i_{2}}^{2}(t) \dots, \mathbf{u}_{i_{K}}^{K}(t)\right)$$

Challenges:

- How to model the dynamic factors in an efficient and flexiable way?
- How to model the possible dependency over co-evolving factors?

Insight: Bridge of Tensor and Graph

$$y_{\mathbf{i}}(t) \approx g\left(\mathbf{u}_{i_1}^1(t), \mathbf{u}_{i_2}^2(t) \dots, \mathbf{u}_{i_K}^K(t)\right)$$

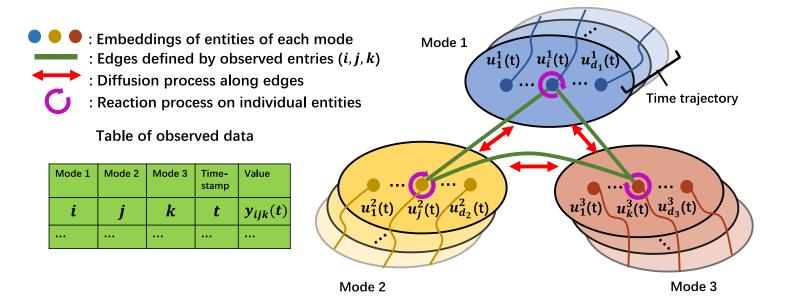
- How to model the possible dependency over co-evolving factors?

Build a Graph!

High-level insights:

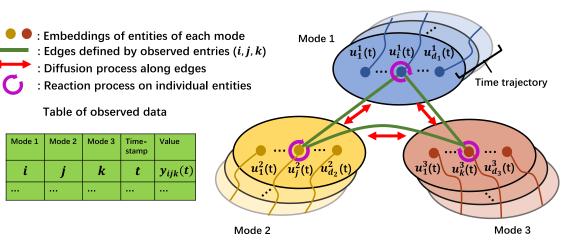
- We know graph <=> matrix...
- Tensor data <=> Hyper-graph / K-Partite graph (encoding inherent nature of tensor)
- Dynamic factors <=> graph-constrained ODE / dynamic process on graph!

Key Idea: dynamic tensor <=> dynamic process on a (K-Partite)-graph

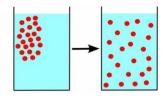


How to build a graph from tensor data?

- Graph node ⇔ tensor factors
- Graph edges ⇔ tensor entries (interaction of factors)
- Edge weights W: learnable



How to model the dynamic process? **Diffusion process on graph**



Model concentration change on the graph! and co-evolving of factors

Node-wise:

$$\frac{\mathrm{d}\mathbf{u}_{j}^{k}}{\mathrm{d}t} = \sum_{s \in \{1,\dots,K\} \setminus k} \sum_{j'=1}^{d_{s}} [\mathbf{W}^{k,s}]_{j,j'} \left(\mathbf{u}_{j'}^{s}(t) - \mathbf{u}_{j}^{k}(t)\right) = \sum_{s \in \{1,\dots,K\} \setminus k} \left(\mathbf{w}_{j}^{k,s}\mathbf{U}^{s}(t)\right)^{\top} - a_{j}^{k,s}\mathbf{u}_{j}^{k},$$
Edge weights "concentration gap"

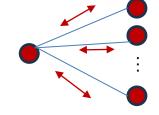
Diffusion ratio

Edge weights "concertration gap (strength of connection)

Group-wise:

$$rac{\partial \mathcal{U}(t)}{\partial t} = (\mathcal{W}-\mathcal{A})\mathcal{U}(t)$$
 $^{\mathcal{W}=}$

$$\mathbf{H} = \begin{pmatrix} \mathbf{0} & \mathbf{W}^{1,2} & \dots & \mathbf{W}^{1,K} \\ \mathbf{W}^{2,1} & \mathbf{0} & \dots & \vdots \\ \vdots & \ddots & \mathbf{W}^{K-1,K} \\ \mathbf{W}^{K,1} & \dots & \mathbf{W}^{K,K-1} & \mathbf{0} \end{pmatrix}$$



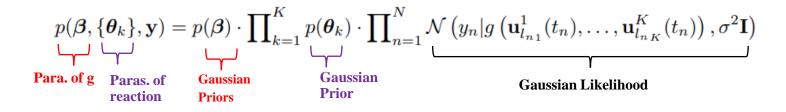
$$\mathcal{A} = ext{diag} \left(\sum_{s \in \{1...K\} \setminus 1} \mathbf{A}^{1,s}, \dots, \sum_{s \in \{1...K\} \setminus K} \mathbf{A}^{K,s} \right)$$

How to model the dynamic process? Diffusion process on graph + Reaction Process *Model the local concentration change* and self-envoving of factors Final diffusion-reaction ODE: $\partial \mathcal{U}(t)$ $\mathbf{f}_{\boldsymbol{\theta}_1}(\mathbf{u}_1^1, t)$ $(-\mathcal{A})\mathcal{U}(t) + \mathcal{F}(\mathcal{U},t)$ $\mathcal{U}(0) = \mathcal{U}_0$ $\mathcal{F}(\mathcal{U},t) = [\mathbf{f}_{\boldsymbol{\theta}_1}(\mathbf{u}_1^1,t),\ldots,\mathbf{f}_{\boldsymbol{\theta}_1}(\mathbf{u}_{d_1}^1,t),\ldots,\mathbf{f}_{\boldsymbol{\theta}_K}(\mathbf{u}_1^K,t),\ldots,\mathbf{f}_{\boldsymbol{\theta}_K}(\mathbf{u}_{d_K}^K,t)]^{\top}.$

Entrt value Generation: nonlinear NN-based decomposition

$$y_{\ell}(t) = g\left(\mathbf{u}_{l_1}^1(t), \dots, \mathbf{u}_{l_K}^K(t)\right)$$

Joint Probability:



• Run gradient-track ODEsolver first:

$$\frac{\partial \mathcal{U}(t)}{\partial t} = (\mathcal{W} - \mathcal{A})\mathcal{U}(t) + \mathcal{F}(\mathcal{U}, t), \quad \mathcal{U}(0) = \mathcal{U}_0 \quad \longrightarrow \quad \mathcal{U}(t_n) = \text{ODESolve}(\mathcal{U}_0, 0, t_n, \Theta)$$

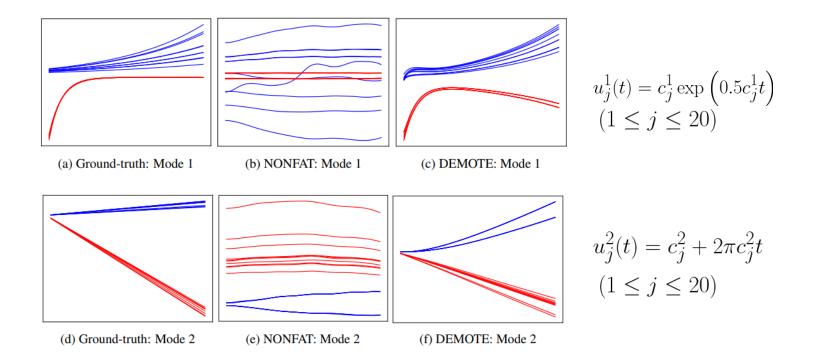
$$\text{Gradient of edge weights, initial value, parameters of reaction process}$$

$$\mathcal{L} = \log p(\beta, \{\theta_k\}, \mathbf{y}) = \log(\text{Prior}) - \sum_{n=1}^{N} \log \mathcal{N}\left(y_n | g\left(\mathbf{u}_{l_{n1}}^1(t_n), \dots, \mathbf{u}_{l_{nK}}^K(t_n)\right), \sigma^2 \mathbf{I}\right)$$

 $\log(\text{Prior}) = \log p(\boldsymbol{\beta}) + \sum_{k=1}^{K} \log p(\boldsymbol{\theta}_k),$

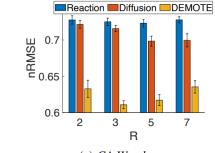
Evaluation of DEMOTE: synthetic task

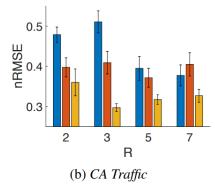
UNIVERSITY Of Utah®



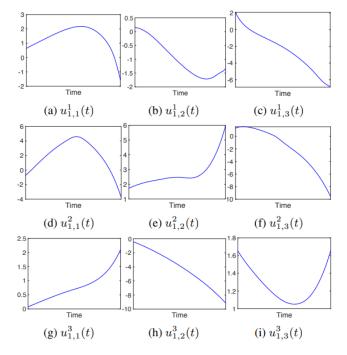
Predictive performance & ablation study

CA Weather	R = 2	R = 3	R = 5	R = 7
CP-DTLD	0.7440 ± 0.0035	0.7372 ± 0.0040	0.7290 ± 0.0042	0.7270 ± 0.0044
GP-DTLD	0.7417 ± 0.0031	0.7414 ± 0.0036	0.7444 ± 0.0036	0.7449 ± 0.0039
NN-DTLD	0.7228 ± 0.0054	0.7116 ± 0.0033	0.7070 ± 0.0041	0.7065 ± 0.0038
CP-DTND	0.7448 ± 0.0031	0.7360 ± 0.0035	0.7273 ± 0.0037	0.7280 ± 0.0044
GP-DTND	0.7399 ± 0.0034	0.7346 ± 0.0032	0.7448 ± 0.0037	0.7467 ± 0.0031
NN-DTND	0.7113 ± 0.0045	0.6979 ± 0.0126	0.6659 ± 0.0122	0.6543 ± 0.0155
CP-CT	1.0000 ± 0.0096	0.9959 ± 0.0067	1.0010 ± 0.0017	1.0060 ± 0.0034
GP-CT	0.7433 ± 0.0038	0.7354 ± 0.0027	0.7359 ± 0.0034	0.7377 ± 0.0033
NN-CT	0.8697 ± 0.0014	0.8679 ± 0.0022	0.8676 ± 0.0018	0.8695 ± 0.0016
NONFAT	0.7444 ± 0.0042	0.7460 ± 0.0032	0.7645 ± 0.0061	0.7553 ± 0.0029
THIS-ODE	0.7511 ± 0.0052	0.7539 ± 0.0041	0.7614 ± 0.0024	0.7620 ± 0.0032
DEMOTE	$\bf 0.6327 \pm 0.0119$	0.6109 ± 0.0056	0.6172 ± 0.0075	${\bf 0.6354 \pm 0.0085}$
CA Traffic				
CP-DTLD	0.6498 ± 0.0257	0.6424 ± 0.0266	0.6436 ± 0.0268	0.6405 ± 0.0262
GP-DTLD	0.6309 ± 0.0167	0.6290 ± 0.0185	0.6383 ± 0.0204	0.6496 ± 0.0193
NN-DTLD	0.6528 ± 0.0230	0.6545 ± 0.0244	0.6401 ± 0.0282	0.6136 ± 0.0338
CP-DTND	0.6497 ± 0.0245	0.6456 ± 0.0265	0.6431 ± 0.0263	0.6419 ± 0.0259
GP-DTND	0.6544 ± 0.0213	0.6559 ± 0.0224	0.6604 ± 0.0243	0.6674 ± 0.0214
NN-DTND	0.6578 ± 0.0248	0.6528 ± 0.0256	0.6519 ± 0.0249	0.6482 ± 0.0261
CP-CT	0.9858 ± 0.0120	0.9972 ± 0.0056	0.9816 ± 0.0136	0.9991 ± 0.0120
GP-CT	0.6610 ± 0.0207	0.6668 ± 0.0191	0.6756 ± 0.0190	0.6768 ± 0.0196
NN-CT	0.9804 ± 0.0017	0.9815 ± 0.0015	0.9791 ± 0.0012	0.9802 ± 0.0017
NONFAT	0.4461 ± 0.0247	0.4610 ± 0.0231	0.5031 ± 0.0155	0.6307 ± 0.0847
THIS_ODE	0 0000 1 0 0000	0.6536 ± 0.0212	0.6838 ± 0.0103	0.6378 ± 0.0142
	0.6603 ± 0.0230	0.6536 ± 0.0212	0.6838 ± 0.0193	$0.03/8 \pm 0.01/12$





Trajactory learning for factors and entries



THE

UNIVERSITY OF UTAH®

Figure 4: The learned embedding trajectories for location 1 (a-c), air conditional mode 1 (d-f), and power usage level 1 (g-i) in Server Room dataset.

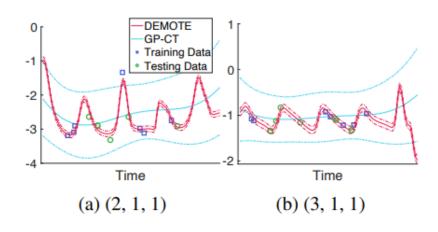
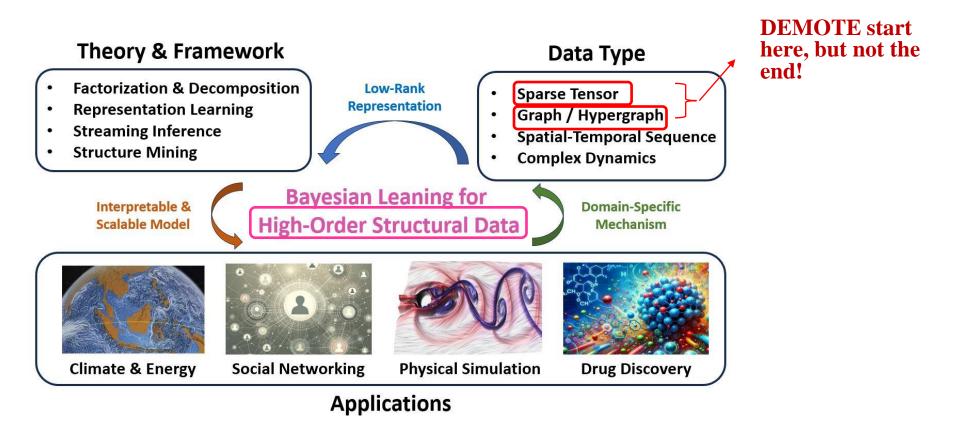


Figure 5: Entry value prediction on Server Room.

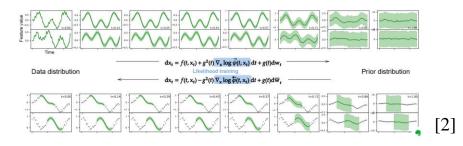
Broader view of tensor learning

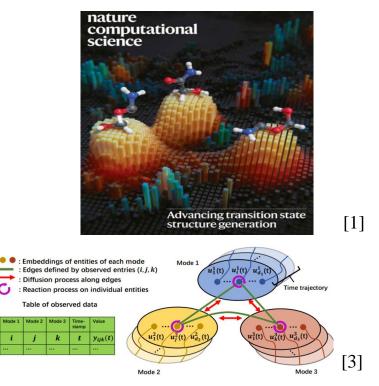
UNIVERSITY <u>of</u> utah®



Unified framework for dynamic structural Data

- Low-rank surrogate for high-order structure
- Generative & Structure in latent space
- Unified framework for various data types (tensor, hypergraph, dynamics...)





Duan et al., "Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model", Nature Computational Science
 Chen* & Fang* et al., "Provably Convergent Schrodinger Bridge with Applications to Probabilistic Time Series Imputation", ICML 2023
 Wang* & Fang* et al., "Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes", Neurips 2023

U UNIVERSITY First Principles \Leftrightarrow Priors of tensor learning

• Encoding the **first principle** of science/industry as model priors

First Principle	Domain	Model with Prior
Symmetry structure	Bio, Chemistry	Equivariant GNN[1]
Diffusion process	Physics	Diffusion model[2]
Differential equation	Physics, Engineering	NeuralODE[3]

nature

Explore content Y About the journal Y Publish with us Y Subscribe

nature > review articles > article

Review Published: 02 August 2023

Scientific discovery in the age of artificial intelligence

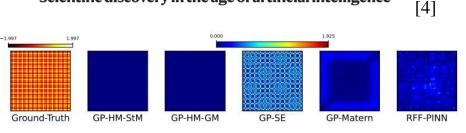


Figure 7: Point-wise solution error for 2D Poisson equation and the solution is $u(x) = \sin(6x)\sin(20x) + \sin(6y)\sin(20y)$. [5]

[1]:Satorras et al., "Equivariant graph neural network", ICML 2021

[2]: Jascha, et al., "Deep unsupervised learning using nonequilibrium thermodynamics, ICML 2015

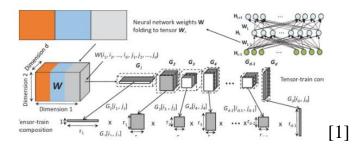
[3]: Chen et al., "Neural Ordinary Differential Equations", NIPS 2018

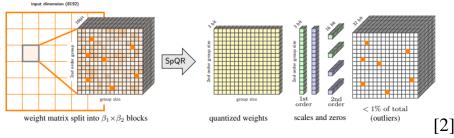
[4]: Wang et al., "scientific discovery in the age of artificial", Nature 2023

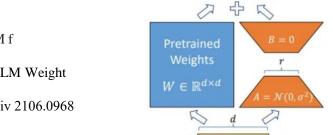
[5]: Fang et al., "Solving High Frequency and Multi-Scale PDEs with Gaussian Processes", ICLR 2024

Efficient & Adaptive LLM via Low-Rank

- Tensorization of LLM + Quantization for Edge computing
- Tensor-based multi-LORA for LLM + multi-task/domain fine-tuning/alignment







h

[3]

[1]: Huang et al., "An energy-efficient machine learning accelerator on 3D CMOS-RRAM f or layer-wise tensorized neural network", *IEEE SOCC.*, 2017.

[2]: Tim Dettmers et al., "SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression", arxiv 2306.03078

[3]: Edward J. Hu, et al., "LoRA: Low-Rank Adaptation of Large Language Models", arxiv 2106.0968

Thank you!

Appendix