HIGH-DIMENSIONAL DENSITY ESTIMATION WITH TENSORIZING FLOW

Yinuo Ren*, Hongli Zhao[†], Yuehaw Khoo[†], Lexing Ying*

*Institute for Computational and Mathematical Engineering, Stanford University † Department of Statistics, University of Chicago

> Tensor Network Reading Group Université de Montréal and Mila November 21, 2023

INTRODUCTION Density Estimation

Problem setting

Given *N* i.i.d. *d*-dimensional samples $\mathbf{x}^{(i)} = (x_1^{(i)}, \cdots, x_d^{(i)})_{1 \le i \le N} \sim p^*(\mathbf{x})$, construct another distribution $p_{\theta}(\mathbf{x})$ that approximates $p^*(\mathbf{x})$.

- $p_{\theta}(x)$ is required to be *normalized*
- $p_{\theta}(x)$ should be easy to sample from

Maximum likelihood estimation (MLE)

• Empirical distribution:

$$p^{\mathsf{E}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(\mathbf{x} - \mathbf{x}^{(i)}\right),$$

MLE formulation:

$$\begin{split} \theta &= \operatorname*{arg\,min}_{\theta} \mathbb{D}_{\mathrm{KL}}\left(p^{*}(\cdot) \| p_{\theta}(\cdot)\right) = \operatorname*{arg\,min}_{\theta} \mathbb{E}_{\mathbf{x} \sim p^{*}}\left[-\log p_{\theta}(\mathbf{x})\right] \\ &\approx \operatorname*{arg\,min}_{\theta} \mathbb{E}_{\mathbf{x} \sim p^{\mathsf{E}}}\left[-\log p_{\theta}(\mathbf{x})\right] \end{split}$$

INTRODUCTION Flow-based Generative Models

Flow-based Generative models

A simple base distribution $q_0(x) \longrightarrow$ A challenging target distribution $q_1(x)$

▶ **Goal**: To design a pushforward $f : \mathbb{R}^d \to \mathbb{R}^d$ mapping $q_0(x)$ to $q_1(x)$ that satisfies

$$q_1(\mathbf{x}) = q_0\left(f^{-1}(\mathbf{x})\right) \left| \det\left(\frac{\partial f^{-1}}{\partial \mathbf{x}}\right) \right|$$

• Methodology: Parametrize f_{θ} with a neural network θ and train with MLE

$$\min_{\theta} \mathbb{E}_{\boldsymbol{x} \sim q_1} \left[-\log q_0 \left(f_{\theta}^{-1}(\boldsymbol{x}) \right) - \log \left| \det \left(\frac{\partial f_{\theta}^{-1}}{\partial \boldsymbol{x}} \right) \right| \right]$$

Examples: Normalizing flow (NICE, RealNVP, MAF, Glow, etc.)

INTRODUCTION Flow-based Generative Models

Continuous-time Flow Models

Regard *f* as the result of a flow that pushes the density q(x, t), with $q(x, 0) = q_0(x)$, over time *t* while conserving total probability mass.

Related concepts:

- Continuity equation: $\frac{\partial q(\mathbf{x},t)}{\partial t} + \nabla \cdot [q(\mathbf{x},t)\mathbf{v}(\mathbf{x})] = 0$
- Brenier theorem: $v(\mathbf{x}) = \nabla \phi(\mathbf{x})$
- Lagragian formulation: $\frac{d\mathbf{x}(t)}{dt} = \nabla \phi(\mathbf{x}(t)), \quad \frac{dq(\mathbf{x}(t),t)}{dt} = -q(\mathbf{x}(t),t)\nabla^2 \phi(\mathbf{x}(t))$

• Methodology: Parametrize $\phi_{\theta}(x)$ with a neural network and train with MLE

3 / 22

INTRODUCTION Tensor-train (TT) Representations

Discrete TT representation of a *d***-tensor** $F(i_1, \dots, i_d)$

$$\mathsf{F}(i_1,\ldots,i_d)\approx\mathsf{G}_1(i_1,:)\mathsf{G}_2(:,i_2,:)\cdots\mathsf{G}_d(:,i_d),$$

Continuous TT representation of a *d***-dimensional function** $F(x_{1:d})$

$$F(x_{1:d}) \approx \sum_{\alpha_1=1}^{r_1} \sum_{\alpha_2=1}^{r_2} \cdots \sum_{\alpha_{d-1}=1}^{r_{d-1}} G_1(x_1, \alpha_1) G_2(\alpha_1, x_2, \alpha_2) \cdots G_d(\alpha_{d-1}, x_d)$$

(a) Discrete tensor-train representation

(b) Continuous tensor-train representation

METHODOLOGY Tensorizing Flow

Challenges of Flow-based Models

- Limited Expressivity: Requires highly expressive functions to capture complex distributions q₁(x)
- **Computational Cost:** Intensive to evaluate function *f* and its Jacobian

$$\det\left(\frac{\partial f^{-1}}{\partial \boldsymbol{x}}\right)$$

 Mode Collapse: Struggles with multi-modal distributions

Challenges of TT Representations

- Inflexibility: Limited in representing complex distributions
- Strong Ansatz: Leads to reduced spatial correlation
- Truncation Error: Arises from assumptions on bond dimensions (or ranks) r_i
- Training Difficulty: Presents a highly non-convex optimization challenge

How can we synergize the strengths of both models?

METHODOLOGY Tensorizing Flow

Tensorizing Flow

$$p^{\mathsf{E}}(\cdot) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(\cdot - \mathbf{x}^{(i)}\right) \xrightarrow{1} p^{\mathsf{TT}}(\cdot) \xrightarrow{2} p_{\theta}^{\mathsf{TF}}(\cdot) := q_{\theta}(\cdot) \approx p^{*}(\cdot)$$

- 1. Construct the approximate TT representation $p^{\mathsf{TT}}(x)$ from the set $\{x^{(i)}\}_{1 \le i \le N}$.
- 2. Define the potential function $\phi_{\theta}(\mathbf{x})$, parameterized by a neural network θ . Initialize $q(\mathbf{x}, 0) = p^{\mathsf{TT}}(\mathbf{x})$ and develop $q_{\theta}(\mathbf{x}) = q(\mathbf{x}, T)$.
- 3. Train the neural network using the set $\{x^{(i)}\}_{1 \le i \le N}$ to minimize the loss function:

$$\mathcal{L}(\theta) = -\mathbb{E}_{\pmb{x} \sim p^{\mathsf{E}}} \log p_{\theta}^{\mathsf{TF}}(\pmb{x})$$

Main Advantages

- **Enhanced Expressivity**: $p^{TT}(x)$ effectively captures multi-modality
- ▶ Flexibility: The subsequent NN-based flow refines density estimation
- ▶ **Reduced Computational Cost**: The near-identity nature of $\nabla \phi_{\theta}(x)$ allows for a simpler neural network to parameterize the flow

Ideal Case: Recover finite-rank and Markovian density *p*

Assumptions

▶ **Finite-rank**: For $1 \le k \le d - 1$, the *rank* of the reshaped version $p(x_{1:k}; x_{k+1:d})$ is r_k , *i.e.* $p(x_{1:k}; x_{k+1:d})$ as a *Hilbert-Schmidt kernel* admits the following *Schmidt decomposition*:

$$p(x_{1:k}; x_{k+1:d}) = \sum_{\alpha_k=1}^{r_k} \Phi_k(x_{1:k}; \alpha_k) \Psi_k(\alpha_k; x_{k+1:d})$$

• Markovian: The density function p(x) is Markovian, i.e.

$$p(x_{1:d}) = p(x_1)p(x_2|x_1)\cdots p(x_d|x_{d-1})$$

Theorem 1 (Core determining equations)

Under the assumptions above, there exists a unique solution $G_1 : I \times [r_1] \to \mathbb{R}$, $G_2 : [r_1] \times I \times [r_2] \to \mathbb{R}$, ..., $G_d : [r_{d-1}] \times I \to \mathbb{R}$ to the following system of core determining equations (CDEs):

$$G_1(x_1;\alpha_1) = \Phi_1(x_1;\alpha_1),$$

$$\sum_{\alpha_{k-1}=1}^{r_{k-1}} \Phi_{k-1}(x_{1:k-1};\alpha_{k-1})G_k(\alpha_{k-1};x_k,\alpha_k) = \Phi_k(x_{1:k-1};x_k,\alpha_k), \ 2 \le k \le d-1,$$
$$\sum_{\alpha_{d-1}=1}^{r_{d-1}} \Phi_{d-1}(x_{1:d-1};\alpha_{d-1})G_d(\alpha_{d-1};x_d) = p(x_{1:d-1};x_d),$$

with

$$p(\mathbf{x}) = G_1(x_1, :)G_2(:, x_2, :) \cdots G_d(:, x_d).$$

Finite-rank and Markovian \Leftrightarrow Exact TT representation

Left-sketching Technique

9 / 22

Methodology

CONSTRUCTION OF AN APPROXIMATE TT REPRESENTATION

How to select the left-sketching functions $S_{k-1}(y_{k-1}; x_{1:k-1})$?

Observations

Suppose p(x) is Markovian, then

- $p(x_{i:k}; x_{k+1:j})$ and $p(x_{i:k}; x_{k+1})$ have the same column space
- ▶ $p(x_{i:k}; x_{k+1:j})$ and $p(x_k; x_{k+1:j})$ have the same row space

Algorithm

- 1. Select $S_{k-1}(y_{k-1}; x_{1:k-1}) = \delta(y_{k-1} x_{k-1})$, *i.e.* the operation of marginalizing out the first k 2 dimensions
- 2. Form $B_k(x_{k-1}, x_k; \alpha_k)$ with the first r_k left singular vectors of $p_k(x_{k-1}, x_k; x_{k+1})$
- 3. Obtain A_k by marginalizing out the first dimension of B_k

Remarks

- The exact TT representation of any ideal (*finite-rank* and *Markovian*) density p(x) can be obtained with the algorithm above
- The algorithm only requires 2- or 3-marginals $p_k(x_{k-1}, x_k; x_{k+1})$ of p(x)

General Case: Approximate the target density $p^*(x)$

• Construct **kernel density estimators** $p_k^{S}(x_{k-1:k+1})$ of the mariginals p_k^{*} from samples $\{x^{(i)}\}_{1 \le i \le N}$:

$$p_k^{\mathsf{S}}(x_{k-1:k+1}) := \frac{1}{Nh} \sum_{i=1}^N K\left(\frac{x_{k-1:k+1} - x_{k-1:k+1}^{(i)}}{h}\right)$$

Discretize continuous dimensions by series expansion with normalized Legendre polynomials

$$\mathbf{G}_k(\alpha_{k-1}; i_k, \alpha_k) = \int_I G_k(\alpha_{k-1}; x_k, \alpha_k) L_{i_k}(x_k) \mathrm{d}x_k$$

11 / 22

METHODOLOGY IMPLEMENTATION OF THE CONTINUOUS-TIME FLOW

Continuous-time Flow

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \nabla \phi_{\theta}(\mathbf{x}(t)), \quad \frac{\mathrm{d}q(\mathbf{x}(t),t)}{\mathrm{d}t} = -q(\mathbf{x}(t),t)\nabla^2 \phi_{\theta}(\mathbf{x}(t))$$

- **Potential function**: $\phi_{\theta}(\mathbf{x})$ parameterized by a neural network
- Architecture: Four-layer MLP initialized with the identity map
- ▶ Initial density: Approximate TT representation, *i.e.* $q(x, 0) = p^{TT}(x)$
- Final density: $q_{\theta}(\mathbf{x}) := q(\mathbf{x}, T) \approx p^*(\mathbf{x})$
- ► Loss: MLE

$$\mathcal{L}(\theta) = -\mathbb{E}_{\boldsymbol{x} \sim p^{\mathsf{E}}} \log q_{\theta}(\boldsymbol{x})$$

► Implementation:

$$\boldsymbol{x}(T) \sim p^{\mathsf{E}} \xrightarrow[\phi_{\theta}]{\text{Runge-Kutta}} \boldsymbol{x}(0) \xrightarrow[\phi_{\theta}]{\text{evaluate}} q(\boldsymbol{x}(0), 0) = p^{\mathsf{TT}}(\boldsymbol{x}(0)) \xrightarrow[\phi_{\theta}]{\text{Runge-Kutta}} q(\boldsymbol{x}(T), T)$$

EXPERIMENTS ROSENBROCK DISTRIBUTION

Rosenbrock distribution

Consider the distribution $p^*(x) \propto \exp(-v(x)/2)$, where

$$v(\mathbf{x}) = \sum_{i=1}^{d-1} \left[c_i^2 x_i^2 + \left(c_{i+1} x_{i+1} + 5(c_i^2 x_i^2 + 1) \right)^2 \right]$$

- ▶ **Parameters**: d = 10, $c_i = 2$, $1 \le i \le d 2$, $c_{d-1} = 7$, and $c_d = 200$.
- *Isotropic* in the first d 2 variables while *concentrated* along a curve on the last two dimensions

EXPERIMENTS ROSENBROCK DISTRIBUTION

Learning curves

Tensorizing flow outperforms normalizing flow in terms of both initial (approx. TT representation) and final loss (approx. TT representation + continuous-time flow).

EXPERIMENTS ROSENBROCK DISTRIBUTION

Sampling results

▶ (d-2)- and (d-1)-th dimension

Given samples Given samples -0.6 -0.6 -0.6 Generated samples Generated sample -0.75 -0.50 -0.25 0.00 0.25 -0.75 -1.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.50 0.75 1.00 -1.00 -0.50 -0.25 0.00 X_{d-1} X_{d-1} χ_{d-1} (a) NF (b) TT representation (c) TF

▶ No need for **extra-fine** grids for last two dimensions as in [1]

Given samples

0.25 0.50 0.75 1.00

Generated samples

EXPERIMENTS 1D GINZBURG-LANDAU DISTRIBUTION

Ginzburg-Landau distribution

$$\mathcal{E}[x(\cdot)] = \int_{\Omega} \left[\frac{\delta}{2} |\nabla_{\mathbf{r}} x(\mathbf{r})|^2 + \frac{1}{\delta} V(x(\mathbf{r})) \right] \mathrm{d}\mathbf{r},$$

where the potential $V(x) = (1 - x^2)^2 / 4$.

1D Ginzburg-Landau distribution

Consider the distribution $p^*(x) \propto \exp(-\beta E(x))$, where

$$E(\mathbf{x}) = \sum_{i=1}^{d+1} \left[\frac{\delta}{2} \left(\frac{x_i - x_{i-1}}{h} \right)^2 + \frac{1}{4\delta} \left(1 - x_i^2 \right)^2 \right]$$

• Settings:
$$\Omega = [0, L], h = L/(d+1), x_i \approx x(ih)$$

b Dirichlet boundary conditions: $x_0 = x_{d+1} = 0$

EXPERIMENTS 1D GINZBURG-LANDAU DISTRIBUTION

Ablation Study with d= 16, $\delta=$ 1, $\beta=$ 3

Test loss comparison w/different sample sizes N

(b) Tensorizing flow

Comparison w/different NN architectures

- ► The initial approx. TT representation improves as *N* increases
- TF with 10⁴ samples outperforms NF of the same NN architecture with 10⁵ samples
- NF with 10⁶ parameters overfits significantly
- TF with 10⁴ parameters outperforms NF with 10⁶ parameters

EXPERIMENTS 2D GINZBURG-LANDAU DISTRIBUTION

2D Ginzburg-Landau distribution

Consider the distribution $p^*(\mathbf{x}) \propto \exp{(-\beta E(\mathbf{x}))}$, where

$$E(\mathbf{x}) = \sum_{i=1}^{\sqrt{d}} \sum_{j=1}^{\sqrt{d}} \left[\frac{\delta}{2} \left(\left(\frac{x_{i,j} - x_{i-1,j}}{h} \right)^2 + \left(\frac{x_{i,j} - x_{i,j-1}}{h} \right)^2 \right) + \frac{1}{4\delta} \left(1 - x_{i,j}^2 \right)^2 \right].$$

▶ TF learns a complicated **non**-Markovian distribution

DISCUSSIONS

Related Work: Tensorizing Flow for Variational Inference [3]

- ► **Goal**: Given an energy function $U : \Omega \to \mathbb{R}$, learn a distribution $p^*(x) \propto \exp(-U(x))$
- Methodology: Construct a tensorizing flow *p*^{TF}_θ(*x*) and train by minimizing the KL divergence

$$\begin{split} \theta &= \arg\min_{\theta} \mathsf{D}_{\mathsf{KL}} \left(p_{\theta}^{\mathsf{TF}}(\cdot) \| p^{*}(\cdot) \right) \\ &= \arg\min_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\theta}^{\mathsf{TF}}} \left[\log p_{\theta}^{\mathsf{TF}}(\mathbf{x}) - \log p^{*}(\mathbf{x}) \right] \\ &= \arg\min_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\theta}^{\mathsf{TF}}} \left[\log p_{\theta}^{\mathsf{TF}}(\mathbf{x}) + U(\mathbf{x}) \right] \end{split}$$

Differences:

- Construct an approximate TT representation for $\exp(-U(\mathbf{x}))$
- Draw samples from $p_{\theta}^{\mathsf{TF}}(\mathbf{x})$ instead of $p^*(\mathbf{x})$

Experimental Results

 Gaussian mixture distribution (multi-modal)

DISCUSSIONS

Takeaways

- **Tensorizing flow**: First to combine the flexibility of **neural networks** and the efficiency and robustness of **tensor-train representations**
- Step 1. Apply left-sketching and kernel density estimation techniques to construct an approximate TT representation
- Step 2. Adapt continuous-time flow model and parameterize the flow with a simple (but sufficient) neural network architecture
- ► Tensorizing flow
 - achieves better sample and computational efficiency than normalizing flow
 - is less prone to overfitting
 - is particularly effective for high-dimensional multi-modal distributions possibly with singularities

Future Work

- Explore other expansion bases, *e.g.* Fourier basis and Chebyshev polynomials
- Replace the continuous-time flow model with more powerful ones
- Design more adaptive schemes for non-Markovian models with more sophisticated graph structures (preliminary work by our group [5])

REFERENCES I

- [1] DOLGOV, S., ANAYA-IZQUIERDO, K., FOX, C., AND SCHEICHL, R. Approximation and sampling of multivariate probability distributions in the tensor train decomposition. *Statistics and Computing* 30, 3 (2020), 603–625.
- [2] HUR, Y., HOSKINS, J. G., LINDSEY, M., STOUDENMIRE, E. M., AND KHOO, Y. Generative modeling via tensor train sketching. *Applied and Computational Harmonic Analysis* 67 (Nov. 2023), 101575.
- [3] KHOO, Y., LINDSEY, M., AND ZHAO, H. Tensorizing flows: A tool for variational inference. *arXiv preprint arXiv:*2305.02460 (2023).
- [4] REN, Y., ZHAO, H., KHOO, Y., AND YING, L. High-dimensional density estimation with tensorizing flow. *Research in the Mathematical Sciences* 10, 3 (Sept. 2023), 30.
- [5] TANG, X., HUR, Y., KHOO, Y., AND YING, L. Generative modeling via tree tensor network states. *arXiv preprint arXiv:2209.01341* (2022).

Thank you! Merci beaucoup!