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INTRODUCTION
DENSITY ESTIMATION

Problem setting

Given N i.i.d. d-dimensional samples x(i) = (x(i)1 , · · · , x(i)d )1≤i≤N ∼ p∗(x), construct another
distribution pθ(x) that approximates p∗(x).

▶ pθ(x) is required to be normalized
▶ pθ(x) should be easy to sample from

Maximum likelihood estimation (MLE)

▶ Empirical distribution:

pE(x) =
1
N

N∑
i=1

δ
(

x − x(i)
)
,

▶ MLE formulation:

θ = argmin
θ

DKL (p∗(·)∥pθ(·)) = argmin
θ

Ex∼p∗ [− log pθ(x)]

≈ argmin
θ

Ex∼pE [− log pθ(x)]
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INTRODUCTION
FLOW-BASED GENERATIVE MODELS

Flow-based Generative models

A simple base distribution q0(x) −→ A challenging target distribution q1(x)

▶ Goal: To design a pushforward f : Rd → Rd mapping q0(x) to q1(x) that satisfies

q1(x) = q0

(
f−1(x)

) ∣∣∣∣det(∂f−1

∂x

)∣∣∣∣
▶ Methodology: Parametrize fθ with a neural network θ and train with MLE

min
θ

Ex∼q1

[
− log q0

(
f−1
θ (x)

)
− log

∣∣∣∣∣det
(
∂f−1

θ

∂x

)∣∣∣∣∣
]

▶ Examples: Normalizing flow (NICE, RealNVP, MAF, Glow, etc.)
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INTRODUCTION
FLOW-BASED GENERATIVE MODELS

Continuous-time Flow Models
Regard f as the result of a flow that pushes the density q(x, t), with q(x, 0) = q0(x), over time t while
conserving total probability mass.

▶ Related concepts:

• Continuity equation:
∂q(x, t)

∂t
+∇ · [q(x, t)v(x)] = 0

• Brenier theorem: v(x) = ∇ϕ(x)

• Lagragian formulation:
dx(t)

dt
= ∇ϕ(x(t)),

dq(x(t), t)
dt

= −q(x(t), t)∇2ϕ(x(t))
▶ Methodology: Parametrize ϕθ(x) with a neural network and train with MLE
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INTRODUCTION
TENSOR-TRAIN (TT) REPRESENTATIONS

Discrete TT representation of a d-tensor F(i1, · · · , id)

F(i1, . . . , id) ≈ G1(i1, :)G2(:, i2, :) · · ·Gd(:, id),

Continuous TT representation of a d-dimensional function F(x1:d)

F(x1:d) ≈
r1∑

α1=1

r2∑
α2=1

· · ·
rd−1∑

αd−1=1

G1(x1, α1)G2(α1, x2, α2) · · ·Gd(αd−1, xd),
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METHODOLOGY
TENSORIZING FLOW

Challenges of Flow-based Models

▶ Limited Expressivity: Requires highly
expressive functions to capture complex
distributions q1(x)

▶ Computational Cost: Intensive to
evaluate function f and its Jacobian

det

(
∂f−1

∂x

)
▶ Mode Collapse: Struggles with

multi-modal distributions

Challenges of TT Representations

▶ Inflexibility: Limited in representing
complex distributions

▶ Strong Ansatz: Leads to reduced spatial
correlation

▶ Truncation Error: Arises from
assumptions on bond dimensions (or
ranks) ri

▶ Training Difficulty: Presents a highly
non-convex optimization challenge

How can we synergize the strengths of both models?
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METHODOLOGY
TENSORIZING FLOW

Tensorizing Flow

pE(·) = 1
N

N∑
i=1

δ
(
· − x(i)

)
1−→ pTT(·) 2−→ pTF

θ (·) := qθ(·) ≈ p∗(·)

1. Construct the approximate TT representation pTT(x) from the set {x(i)}1≤i≤N.
2. Define the potential function ϕθ(x), parameterized by a neural network θ. Initialize

q(x, 0) = pTT(x) and develop qθ(x) = q(x,T).
3. Train the neural network using the set {x(i)}1≤i≤N to minimize the loss function:

L(θ) = −Ex∼pE log pTF
θ (x)

Main Advantages
▶ Enhanced Expressivity: pTT(x) effectively captures multi-modality
▶ Flexibility: The subsequent NN-based flow refines density estimation
▶ Reduced Computational Cost: The near-identity nature of ∇ϕθ(x) allows for a simpler neural

network to parameterize the flow
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METHODOLOGY
CONSTRUCTION OF AN APPROXIMATE TT REPRESENTATION

Ideal Case: Recover finite-rank and Markovian density p

Assumptions
▶ Finite-rank: For 1 ≤ k ≤ d − 1, the rank of the reshaped version p(x1:k; xk+1:d) is rk, i.e.

p(x1:k; xk+1:d) as a Hilbert-Schmidt kernel admits the following Schmidt decomposition:

p(x1:k; xk+1:d) =

rk∑
αk=1

Φk(x1:k;αk)Ψk(αk; xk+1:d)

▶ Markovian: The density function p(x) is Markovian, i.e.

p(x1:d) = p(x1)p(x2|x1) · · · p(xd|xd−1)
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METHODOLOGY
CONSTRUCTION OF AN APPROXIMATE TT REPRESENTATION

Theorem 1 (Core determining equations)

Under the assumptions above, there exists a unique solution G1 : I × [r1] → R, G2 : [r1]× I × [r2] → R, . . .,
Gd : [rd−1]× I → R to the following system of core determining equations (CDEs):

G1(x1;α1) = Φ1(x1;α1),
rk−1∑

αk−1=1

Φk−1(x1:k−1;αk−1)Gk(αk−1; xk, αk) = Φk(x1:k−1; xk, αk), 2 ≤ k ≤ d − 1,

rd−1∑
αd−1=1

Φd−1(x1:d−1;αd−1)Gd(αd−1; xd) = p(x1:d−1; xd),

with
p(x) = G1(x1, :)G2(:, x2, :) · · ·Gd(:, xd).

Finite-rank and Markovian ⇔ Exact TT representation
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METHODOLOGY
CONSTRUCTION OF AN APPROXIMATE TT REPRESENTATION

Left-sketching Technique

Over-determined CDEs
rk−1∑

αk−1=1

Φk−1(x1:k−1;αk−1)Gk(αk−1; xk, αk) = Φk(x1:k−1; xk, αk)

⇓

Reduced CDEs
rk−1∑

αk−1=1

Ak−1(yk−1;αk−1)Gk(αk−1; xk, αk) = Bk(yk−1; xk, αk)
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METHODOLOGY
CONSTRUCTION OF AN APPROXIMATE TT REPRESENTATION

How to select the left-sketching functions Sk−1(yk−1; x1:k−1)?

Observations
Suppose p(x) is Markovian, then
▶ p(xi:k; xk+1:j) and p(xi:k; xk+1) have the same column space
▶ p(xi:k; xk+1:j) and p(xk; xk+1:j) have the same row space

Algorithm
1. Select Sk−1(yk−1; x1:k−1) = δ(yk−1 − xk−1), i.e. the operation of marginalizing out the first k − 2

dimensions
2. Form Bk(xk−1, xk;αk) with the first rk left singular vectors of pk(xk−1, xk; xk+1)

3. Obtain Ak by marginalizing out the first dimension of Bk

Remarks
▶ The exact TT representation of any ideal (finite-rank and Markovian) density p(x) can be

obtained with the algorithm above
▶ The algorithm only requires 2- or 3-marginals pk(xk−1, xk; xk+1) of p(x)
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METHODOLOGY
CONSTRUCTION OF AN APPROXIMATE TT REPRESENTATION

General Case: Approximate the target density p∗(x)

▶ Construct kernel density estimators pS
k (xk−1:k+1) of the mariginals p∗k from samples {x(i)}1≤i≤N:

pS
k (xk−1:k+1) :=

1
Nh

N∑
i=1

K

(
xk−1:k+1 − x(i)k−1:k+1

h

)
▶ Discretize continuous dimensions by series expansion with normalized Legendre polynomials

Gk(αk−1; ik, αk) =

∫
I
Gk(αk−1; xk, αk)Lik(xk)dxk
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METHODOLOGY
IMPLEMENTATION OF THE CONTINUOUS-TIME FLOW

Continuous-time Flow

dx(t)
dt

= ∇ϕθ(x(t)),
dq(x(t), t)

dt
= −q(x(t), t)∇2ϕθ(x(t))

▶ Potential function: ϕθ(x) parameterized by a neural network
▶ Architecture: Four-layer MLP initialized with the identity map
▶ Initial density: Approximate TT representation, i.e. q(x, 0) = pTT(x)
▶ Final density: qθ(x) := q(x,T) ≈ p∗(x)
▶ Loss: MLE

L(θ) = −Ex∼pE log qθ(x)

▶ Implementation:

x(T) ∼ pE Runge-Kutta
−−−−−−−→

ϕθ

x(0) evaluate−−−−−→ q(x(0), 0) = pTT(x(0))
Runge-Kutta
−−−−−−−→

ϕθ

q(x(T),T)
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EXPERIMENTS
ROSENBROCK DISTRIBUTION

Rosenbrock distribution
Consider the distribution p∗(x) ∝ exp (−v(x)/2), where

v(x) =
d−1∑
i=1

[
c2

i x2
i +

(
ci+1xi+1 + 5(c2

i x2
i + 1)

)2
]

▶ Parameters: d = 10, ci = 2, 1 ≤ i ≤ d − 2, cd−1 = 7, and cd = 200.
▶ Isotropic in the first d − 2 variables while concentrated along a curve on the last two dimensions
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EXPERIMENTS
ROSENBROCK DISTRIBUTION

Learning curves
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(a) Training loss

0 10 20 30 40 50

Epoch

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

L
o

s
s

TF

NF

(b) Test loss

▶ Tensorizing flow outperforms normalizing flow in terms of both initial (approx. TT
representation) and final loss (approx. TT representation + continuous-time flow).
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EXPERIMENTS
ROSENBROCK DISTRIBUTION

Sampling results
▶ (d − 2)- and (d − 1)-th dimension

(a) NF (b) TT representation (c) TF

▶ (d − 1)- and d-th dimension

(a) NF (b) TT representation (c) TF

▶ No need for extra-fine grids for last two dimensions as in [1] 15 / 22



EXPERIMENTS
1D GINZBURG-LANDAU DISTRIBUTION

Ginzburg-Landau distribution

E [x(·)] =
∫
Ω

[
δ

2
|∇rx(r)|2 +

1
δ

V(x(r))
]

dr,

where the potential V(x) =
(
1 − x2)2

/4.

1D Ginzburg-Landau distribution

Consider the distribution p∗(x) ∝ exp (−βE(x)), where

E(x) =
d+1∑
i=1

[
δ

2

(
xi − xi−1

h

)2

+
1
4δ

(
1 − x2

i

)2
]

▶ Settings: Ω = [0,L], h = L/(d + 1), xi ≈ x(ih)
▶ Dirichlet boundary conditions: x0 = xd+1 = 0
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EXPERIMENTS
1D GINZBURG-LANDAU DISTRIBUTION

Ablation Study with d = 16, δ = 1, β = 3
Test loss comparison w/different sample sizes N
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(a) Normalizing flow
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(b) Tensorizing flow

▶ The initial approx. TT representation
improves as N increases

▶ TF with 104 samples outperforms NF of the
same NN architecture with 105 samples

Comparison w/different NN architectures
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(a) Training loss

0 20 40 60 80 100

Epoch

6

8

10

12

14

16

18

20

L
o
s
s

TF

NF

Overfitting NF

(b) Test loss

▶ NF with 106 parameters overfits
significantly

▶ TF with 104 parameters outperforms NF
with 106 parameters
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EXPERIMENTS
2D GINZBURG-LANDAU DISTRIBUTION

2D Ginzburg-Landau distribution

Consider the distribution p∗(x) ∝ exp (−βE(x)), where

E(x) =

√
d∑

i=1

√
d∑

j=1

[
δ

2

((
xi,j − xi−1,j

h

)2

+

(
xi,j − xi,j−1

h

)2
)

+
1
4δ

(
1 − x2

i,j

)2
]
.

▶ TF learns a complicated non-Markovian distribution
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(a) Training loss
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DISCUSSIONS

Related Work: Tensorizing Flow for
Variational Inference [3]
▶ Goal: Given an energy function U : Ω → R,

learn a distribution p∗(x) ∝ exp (−U(x))
▶ Methodology: Construct a tensorizing flow

pTF
θ (x) and train by minimizing the KL

divergence

θ = argmin
θ

DKL

(
pTF
θ (·)∥p∗(·)

)
= argmin

θ
Ex∼pTF

θ

[
log pTF

θ (x)− log p∗(x)
]

= argmin
θ

Ex∼pTF
θ

[
log pTF

θ (x) + U(x)
]

▶ Differences:
• Construct an approximate TT

representation for exp(−U(x))
• Draw samples from pTF

θ (x) instead of p∗(x)

Experimental Results
▶ Gaussian mixture distribution

(multi-modal)
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DISCUSSIONS

Takeaways

▶ Tensorizing flow: First to combine the flexibility of neural networks and the efficiency and
robustness of tensor-train representations

▶ Step 1. Apply left-sketching and kernel density estimation techniques to construct an
approximate TT representation

▶ Step 2. Adapt continuous-time flow model and parameterize the flow with a simple (but
sufficient) neural network architecture

▶ Tensorizing flow
• achieves better sample and computational efficiency than normalizing flow
• is less prone to overfitting
• is particularly effective for high-dimensional multi-modal distributions possibly with

singularities

Future Work

▶ Explore other expansion bases, e.g. Fourier basis and Chebyshev polynomials
▶ Replace the continuous-time flow model with more powerful ones
▶ Design more adaptive schemes for non-Markovian models with more sophisticated graph

structures (preliminary work by our group [5]) 20 / 22
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DISCUSSIONS

Thank you! Merci beaucoup!
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