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Active Inference

3
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Active Inference

Models behavior of an agent
Agent makes observation (o) of- and actions (a) on the world
Agent plans to minimize ’surprise’.
Agent has an internal model of the world, with ’hidden states’ (s)

may be imperfect
should in principle be updated as time goes by
where ML comes in
usually represented by a partially observable Markov decision process (POMDP)
the model may also be represented by a TN
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Active Inference - Example - Mountain Car

o are observations of the location of the car
a are push left or right actions
The hidden state should be velocity v
Agent is ’surprised’ when the car is not at the star
=⇒ the preferred distribution P(o) is centered around the star.
Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



Active Inference - Example - Mountain Car

o are observations of the location of the car

a are push left or right actions
The hidden state should be velocity v
Agent is ’surprised’ when the car is not at the star
=⇒ the preferred distribution P(o) is centered around the star.
Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



Active Inference - Example - Mountain Car

o are observations of the location of the car
a are push left or right actions

The hidden state should be velocity v
Agent is ’surprised’ when the car is not at the star
=⇒ the preferred distribution P(o) is centered around the star.
Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



Active Inference - Example - Mountain Car

o are observations of the location of the car
a are push left or right actions
The hidden state should be velocity v

Agent is ’surprised’ when the car is not at the star
=⇒ the preferred distribution P(o) is centered around the star.
Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



Active Inference - Example - Mountain Car

o are observations of the location of the car
a are push left or right actions
The hidden state should be velocity v
Agent is ’surprised’ when the car is not at the star

=⇒ the preferred distribution P(o) is centered around the star.
Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



Active Inference - Example - Mountain Car

o are observations of the location of the car
a are push left or right actions
The hidden state should be velocity v
Agent is ’surprised’ when the car is not at the star
=⇒ the preferred distribution P(o) is centered around the star.

Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



Active Inference - Example - Mountain Car

o are observations of the location of the car
a are push left or right actions
The hidden state should be velocity v
Agent is ’surprised’ when the car is not at the star
=⇒ the preferred distribution P(o) is centered around the star.
Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



Active Inference - Example - Mountain Car

o are observations of the location of the car
a are push left or right actions
The hidden state should be velocity v
Agent is ’surprised’ when the car is not at the star
=⇒ the preferred distribution P(o) is centered around the star.
Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



Active Inference - Example - Mountain Car

o are observations of the location of the car
a are push left or right actions
The hidden state should be velocity v
Agent is ’surprised’ when the car is not at the star
=⇒ the preferred distribution P(o) is centered around the star.
Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



Active Inference - Example - Mountain Car

o are observations of the location of the car
a are push left or right actions
The hidden state should be velocity v
Agent is ’surprised’ when the car is not at the star
=⇒ the preferred distribution P(o) is centered around the star.
Expected surprisal is < − logP >a1,a2,...

.
POMDP-based model: f (oold, aold, vold) = vnew

TN approach considers the world described by a tensor C(o1, a1, o2, a2, ...)

6 / 20



TN preeliminaries

Big tensor Ci1,..iN

Arbitrary tensor
(|ik〉 – local H space of dim d):

|Ψ〉 =
∑

i1,...,iN
Ci1,i2,...,iN |i1i2...iN〉

dN parameters Ci1,...,iN

exp(N)

Network of tensors

Matrix product state:∑
i1,...,iN

∑
{αβ...ω}

Ai1
αAi2

αβ ...A
iN−1
χω AiN

ω |i1i2...iN〉

O(ND2d) par. (D – dim of bond index)

poly(N)
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T-maze

Ψ(ã, õ) = T (1) T (2) T (3)

o1 o2 o3

a1 a2

,

(1)
Generate data set of consistent actions and observations
Maximize the overlap of the MPS with this data set.
Through two-site updates we can ’learn’ the bond dimension dynamically.
Well understood techniques from TN world
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T-maze - Results
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Outlook

More complicated models
Infinite horizon
Continuous variables
Planning with TN
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PEPS

Natural generalization of MPS to 2D
Allows simulations in the thermodynamic limit
Captures strong correlations and exotic behavior

Gapped Z2 vs gapless U(1) SL in S=1/2 Kagome AF? H.J.Liao et al. PRL 118 (2017)
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Contracting PEPS: Corner Transfer Matrix4

4R. J. Baxter, Journal of Statistical Physics 19.5 (1978)
R. J. Baxter, Exactly solved models in statistical mechanics (1982)
T. Nishino and K.Okunishi (1996)
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Contracting PEPS: Corner Transfer Matrix4

Enables calculation with infinite TN
Random initialization and iterated to convergence

Energy calculated approximately with CTM:

E ≈ Ẽ = F (C ,T ,A,H) =

4R. J. Baxter, Journal of Statistical Physics 19.5 (1978)
R. J. Baxter, Exactly solved models in statistical mechanics (1982)
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Energy gradient

Numerical gradients:
Finite difference: ∂F

∂Ai
= F(A+δ∗ai )−F(A)

δ
+O(δ)

expensive, erroneous

Summation of terms with hole fixed and different Hamiltonian locations:
approximate, expensive for ’larger’ Hamiltonians
P. Corboz, PRB 94, 035133 (2016),
L. Vanderstraeten, J. Haegeman, P. Corboz, and F. Verstraete, PRB 94, 155123 (2016)

Summation of terms with Hamiltonian fixed and different hole locations:
almost like AD, but ignoring isometry contribution, memory expensive
S. P. G. Crone and P. Corboz, PRB 101, 115143 (2020)

Analytical gradients: Automatic/Algorithmic differentiation
memory expensive, can be problematic if treated as black box
H-J. Liao, J-G. Liu, L. Wang, and T, Xiang, PRX 9, 031041 (2019)
J. Hasik, D. Poilblanc, F. Becca, SciPost Phys. 10, 012 (2021)
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Energy gradient
Energy calculated approximately with CTM:

E ≈ Ẽ = F (Cn,Tn,A,H) =

With (Ck ,Tk) ≡ xk = f (xk−1,A) its gradient is:

dẼ =
∂F
∂AdA +

∂F
∂xn

dxn,

dxn =
∂f
∂AdA +

∂f
∂xn−1

(
∂f
∂AdA +

∂f
∂xn−2

(...))

)
,

Problems:
1 costly in memory, need for many iterations
2 gradient of EIG (SVD) poorly conditioned in case of degenerate spectra
3 currently only approximate!
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Problem: Current derivative of EIG(SVD) is only approximate

Solution: Calculate exact

M = PCP† + P⊥C⊥P†
⊥

With PP† + P⊥P†
⊥ = I, leading to Sylvester equation for dP :

(I− PP†)dMP = dPC − (I− PP†)MdP

15 / 20



Problem: Current derivative of EIG(SVD) is only approximate

Solution: Calculate exact

M = PCP†

+ P⊥C⊥P†
⊥

With PP† + P⊥P†
⊥ = I, leading to Sylvester equation for dP :

(I− PP†)dMP = dPC − (I− PP†)MdP

15 / 20



Problem: Current derivative of EIG(SVD) is only approximate

Solution: Calculate exact

M = PCP† + P⊥C⊥P†
⊥

With PP† + P⊥P†
⊥ = I, leading to Sylvester equation for dP :

(I− PP†)dMP = dPC − (I− PP†)MdP

15 / 20



Problem: Current derivative of EIG(SVD) is only approximate

Solution: Calculate exact

M = PCP† + P⊥C⊥P†
⊥

With PP† + P⊥P†
⊥ = I, leading to Sylvester equation for dP :

(I− PP†)dMP = dPC − (I− PP†)MdP

15 / 20



Problem: divergencies in the gradient of EIG(SVD)

Solution: Q-deformed CTM with Q = I

regular CTM:

dC = I ◦ (P†dMP)

P†dP = F ◦ (P†dMP), Fij = 1/(cj − ci)

→

Q-deformed CTM:

dC = P†dMP
P†dP = 0
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Problem: memory intensive, many iterations

Solution: fixed point differentiation

if x = f (A, x):

dx =
∞∑

k=0

(
∂f
∂x

)k
∂f
∂AdA =

(
1 − ∂f

∂x

)−1
∂f
∂AdA.

But: requires element-wise convergence x = f (x ,A)

EIG(SVD) is not unique, so gauge fixing is required:

UCU† =
(
Uσ

)
C
(
σ†U†) ⇒ T̂ f−→ σ†T̂σ = T .
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Comparison of gradients

State: |Ψ〉 = |ϕRVB
NN 〉+ |ϕRVB

long 〉+ β|ϕ3〉, with D = 3, χ = 160

Hamiltonian: H = J1
∑

i,j∈NN,α

f (α)Sα
i Sα

j + J2
∑

i,j∈NNN

−→
S i ·

−→
S j

with SU(2) symmetry breaking anisotropy f ([x , y , z]) = [−1, 1 + β,−1 + β]

Fij → cj−ci
(cj−ci )2+ε

our gradient ge

Case 1: dP = 0
Case 2: current AD
Case 3: using
Sylvester equation
for dP
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Conclusions

We significantly improved the AD for PEPS optimization problems:
stability
accuracy

PEPS libraries cannot yet be treated as blackbox like with DMRG
AD is a great tool if used carefully:

reduces workcost
eliminates bugs
allows for more efficient algorithms
may allow to reach higher bond dimensions D, χ and hence higher correlation
lengths ξ, tackle challenging problems with bigger accuracy
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Thank You
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