AI and TN - a love affair

Bram Vanhecke

University of Vienna
28 Nov 2023

Collaborators

Overview

[^0]
Overview

- Using MPS for active inference planning ${ }^{1}$
- What is Active inference
- How MPS can help

[^1]
Overview

- Using MPS for active inference planning ${ }^{1}$
- What is Active inference
- How MPS can help
- AD for PEPS optimization ${ }^{2}$
- What is PEPS
- How AD can help

[^2]
Active Inference

(solutions to) Belief updating

Functional anatomy

Action selection (and Bayesian model averaging)

$$
\begin{aligned}
u_{r} & =\min _{i n} \mathbf{o}_{r+1} \cdot \varepsilon_{t+1}^{v} \\
\varepsilon_{t+1}^{v} & =\ln \mathbf{A s}_{t+1}-\ln \mathbf{A B}(u) \mathbf{s}_{t} \\
\mathbf{s}_{t} & =\sum_{\pi} \boldsymbol{\pi}_{\pi} \cdot \mathbf{s}_{t}^{\pi}
\end{aligned}
$$

State estimation (planning as inference)

$$
\mathbf{s}_{r}^{z}=\sigma\left(\overline{\mathbf{A}} \cdot o_{r}+\hat{\mathbf{B}}_{r-1}^{\pi} \mathbf{s}_{r-1}^{\pi}+\overline{\mathbf{B}}_{r}^{\pi} \cdot \mathbf{s}_{r+1}^{\pi}\right)
$$

State estimation (habitual)

$$
\mathbf{s}_{t}^{\pi}=\sigma\left(\hat{\mathbf{A}} \cdot o_{t}+\overline{\mathbf{C}} \mathbf{s}_{t-1}^{0}+\overline{\mathbf{C}} \cdot \mathbf{s}_{r+1}^{0}\right)
$$

Policy selection

$$
\begin{aligned}
\boldsymbol{\pi} & =\sigma(\hat{\mathbf{E}}-\mathbf{F}-\boldsymbol{\gamma} \cdot \mathbf{G}) \\
F(\pi, \tau) & =\mathbf{s}_{\tau}^{\pi} \cdot\left(\overline{\mathbf{s}}_{\tau}^{\pi}-\tilde{\mathbf{A}} \cdot o_{\tau}-\hat{\mathbf{B}}_{r-1}^{\pi} \mathbf{s}_{r-1}^{\pi}\right) \\
G(\pi, \tau) & =\mathbf{o}_{\tau}^{\pi} \cdot\left(\overline{\mathbf{o}}_{\tau}^{\pi}-\mathbf{U}_{\tau}\right)+\mathbf{s}_{\tau}^{\pi} \cdot \mathbf{H}
\end{aligned}
$$

Precision (incentive salience)

$$
\boldsymbol{\beta}=\beta+\left(\boldsymbol{\pi}-\boldsymbol{\pi}_{0}\right) \cdot \mathbf{G}
$$

Learning
$\mathbf{c}=c+\sum_{r} \mathbf{s}_{t}^{0} \otimes \mathbf{s}_{t-1}^{0}$

3

Active Inference

Active Inference

- Models behavior of an agent

Active Inference

- Models behavior of an agent
- Agent makes observation (o) of- and actions (a) on the world

Active Inference

- Models behavior of an agent
- Agent makes observation (o) of- and actions (a) on the world
- Agent plans to minimize 'surprise'.

Active Inference

- Models behavior of an agent
- Agent makes observation (o) of- and actions (a) on the world
- Agent plans to minimize 'surprise'.
- Agent has an internal model of the world, with 'hidden states' (s)

Active Inference

- Models behavior of an agent
- Agent makes observation (o) of- and actions (a) on the world
- Agent plans to minimize 'surprise'.
- Agent has an internal model of the world, with 'hidden states' (s)
- may be imperfect

Active Inference

- Models behavior of an agent
- Agent makes observation (o) of- and actions (a) on the world
- Agent plans to minimize 'surprise'.
- Agent has an internal model of the world, with 'hidden states' (s)
- may be imperfect
- should in principle be updated as time goes by

Active Inference

- Models behavior of an agent
- Agent makes observation (o) of- and actions (a) on the world
- Agent plans to minimize 'surprise'.
- Agent has an internal model of the world, with 'hidden states' (s)
- may be imperfect
- should in principle be updated as time goes by
- where ML comes in

Active Inference

- Models behavior of an agent
- Agent makes observation (o) of- and actions (a) on the world
- Agent plans to minimize 'surprise'.
- Agent has an internal model of the world, with 'hidden states' (s)
- may be imperfect
- should in principle be updated as time goes by
- where ML comes in
- usually represented by a partially observable Markov decision process (POMDP)

Active Inference

- Models behavior of an agent
- Agent makes observation (o) of- and actions (a) on the world
- Agent plans to minimize 'surprise'.
- Agent has an internal model of the world, with 'hidden states' (s)
- may be imperfect
- should in principle be updated as time goes by
- where ML comes in
- usually represented by a partially observable Markov decision process (POMDP)
- the model may also be represented by a TN

Active Inference - Example - Mountain Car

Active Inference - Example - Mountain Car

- o are observations of the location of the car

Active Inference - Example - Mountain Car

- o are observations of the location of the car
- a are push left or right actions

Active Inference - Example - Mountain Car

- o are observations of the location of the car
- a are push left or right actions
- The hidden state should be velocity v

Active Inference - Example - Mountain Car

- o are observations of the location of the car
- a are push left or right actions
- The hidden state should be velocity v
- Agent is 'surprised' when the car is not at the star

Active Inference - Example - Mountain Car

- o are observations of the location of the car
- a are push left or right actions
- The hidden state should be velocity v
- Agent is 'surprised' when the car is not at the star \Longrightarrow the preferred distribution $P(o)$ is centered around the star.

Active Inference - Example - Mountain Car

- o are observations of the location of the car
- a are push left or right actions
- The hidden state should be velocity v
- Agent is 'surprised' when the car is not at the star \Longrightarrow the preferred distribution $P(o)$ is centered around the star.
- Expected surprisal is $<-\log P>_{a_{1}, a_{2}, \ldots}$

Active Inference - Example - Mountain Car

- o are observations of the location of the car
- a are push left or right actions
- The hidden state should be velocity v
- Agent is 'surprised' when the car is not at the star \Longrightarrow the preferred distribution $P(o)$ is centered around the star.
- Expected surprisal is $<-\log P>_{a_{1}, a_{2}, \ldots}$
- POMDP-based model: $f\left(o_{\text {old }}, a_{\text {old }}, v_{\text {old }}\right)=v_{\text {new }}$

Active Inference - Example - Mountain Car

- o are observations of the location of the car
- a are push left or right actions
- The hidden state should be velocity v
- Agent is 'surprised' when the car is not at the star \Longrightarrow the preferred distribution $P(o)$ is centered around the star.
- Expected surprisal is $<-\log P>_{a_{1}, a_{2}, \ldots}$
- POMDP-based model: $f\left(o_{\text {old }}, a_{\text {old }}, v_{\text {old }}\right)=v_{\text {new }}$
- TN approach considers the world described by a tensor $C\left(o_{1}, a_{1}, o_{2}, a_{2}, \ldots\right)$

Active Inference - Example - Mountain Car

- o are observations of the location of the car
- a are push left or right actions
- The hidden state should be velocity v
- Agent is 'surprised' when the car is not at the star \Longrightarrow the preferred distribution $P(o)$ is centered around the star.
- Expected surprisal is $<-\log P>_{a_{1}, a_{2}, \ldots}$
- POMDP-based model: $f\left(o_{\text {old }}, a_{\text {old }}, v_{\text {old }}\right)=v_{\text {new }}$
- TN approach considers the world described by a tensor $C\left(o_{1}, a_{1}, o_{2}, a_{2}, \ldots\right)$

TN preeliminaries

TN preeliminaries

Big tensor $C_{i_{1}, . . i_{N}}$

Arbitrary tensor
$\left(\left|i_{k}\right\rangle\right.$ - local \mathcal{H} space of $\left.\operatorname{dim} d\right)$:
$|\Psi\rangle=\sum_{i_{1}, \ldots, i_{N}} C_{i_{1}, i_{2}, \ldots, i_{N}}\left|i_{1} i_{2} \ldots i_{N}\right\rangle$

d^{N} parameters $C_{i_{1}, \ldots, i_{N}}$

$$
\exp (N)
$$

Network of tensors

Matrix product state:

$$
\sum_{i_{1}, \ldots, i_{N}} \sum_{\{\alpha \beta \ldots \omega\}} A_{\alpha}^{i_{1}} A_{\alpha \beta}^{i_{\alpha} \ldots} A_{\chi \omega}^{i_{N-1}} A_{\omega}^{i_{N}}\left|i_{1} i_{2} \ldots i_{N}\right\rangle
$$

$\mathcal{O}\left(N D^{2} d\right)$ par. ($D-\operatorname{dim}$ of bond index) poly (N)

T-maze

T-maze

(1)

T-maze

(1)

- Generate data set of consistent actions and observations

T-maze

(1)

- Generate data set of consistent actions and observations
- Maximize the overlap of the MPS with this data set.

T-maze

(1)

- Generate data set of consistent actions and observations
- Maximize the overlap of the MPS with this data set.
- Through two-site updates we can 'learn' the bond dimension dynamically.

T-maze

(1)

- Generate data set of consistent actions and observations
- Maximize the overlap of the MPS with this data set.
- Through two-site updates we can 'learn' the bond dimension dynamically.
- Well understood techniques from TN world

T-maze

(1)

- Generate data set of consistent actions and observations
- Maximize the overlap of the MPS with this data set.
- Through two-site updates we can 'learn' the bond dimension dynamically.
- Well understood techniques from TN world

T-maze - Results

T-maze - Results

Outlook

Outlook

- More complicated models

Outlook

- More complicated models
- Infinite horizon

Outlook

- More complicated models
- Infinite horizon
- Continuous variables

Outlook

- More complicated models
- Infinite horizon
- Continuous variables
- Planning with TN

PEPS

PEPS

PEPS

- Natural generalization of MPS to 2D

PEPS

- Natural generalization of MPS to 2D
- Allows simulations in the thermodynamic limit

PEPS

- Natural generalization of MPS to 2D
- Allows simulations in the thermodynamic limit
- Captures strong correlations and exotic behavior

PEPS

- Natural generalization of MPS to 2D
- Allows simulations in the thermodynamic limit
- Captures strong correlations and exotic behavior

Gapped \mathbb{Z}_{2} vs gapless $U(1) S L$ in $S=1 / 2$ Kagome AF? H.J.Liao et al. PRL 118 (2017)

Contracting PEPS: Corner Transfer Matrix ${ }^{4}$

Contracting PEPS: Corner Transfer Matrix ${ }^{4}$

(A)

(C)

- Enables calculation with infinite TN
- Random initialization and iterated to convergence

Energy calculated approximately with CTM:

$$
E \approx \tilde{E}=F(C, T, A, H)=
$$

Energy gradient

Energy gradient

- Numerical gradients:

Energy gradient

- Numerical gradients:
- Finite difference: $\frac{\partial F}{\partial A_{i}}=\frac{F\left(A+\delta * a_{i}\right)-F(A)}{\delta}+\mathcal{O}(\delta)$ expensive, erroneous
- Summation of terms with hole fixed and different Hamiltonian locations:
approximate, expensive for 'larger' Hamiltonians
P. Corboz, PRB 94, 035133 (2016),
L. Vanderstraeten, J. Haegeman, P. Corboz, and F. Verstraete, PRB 94, 155123 (2016)
- Summation of terms with Hamiltonian fixed and different hole locations: almost like $A D$, but ignoring isometry contribution, memory expensive
S. P. G. Crone and P. Corboz, PRB 101, 115143 (2020)

Energy gradient

- Numerical gradients:
- Finite difference: $\frac{\partial F}{\partial A_{i}}=\frac{F\left(A+\delta * a_{i}\right)-F(A)}{\delta}+\mathcal{O}(\delta)$
expensive, erroneous
- Summation of terms with hole fixed and different Hamiltonian locations:
approximate, expensive for 'larger' Hamiltonians
P. Corboz, PRB 94, 035133 (2016),
L. Vanderstraeten, J. Haegeman, P. Corboz, and F. Verstraete, PRB 94, 155123 (2016)
- Summation of terms with Hamiltonian fixed and different hole locations:
almost like AD, but ignoring isometry contribution, memory expensive
S. P. G. Crone and P. Corboz, PRB 101, 115143 (2020)
- Analytical gradients: Automatic/Algorithmic differentiation
memory expensive, can be problematic if treated as black box
H-J. Liao, J-G. Liu, L. Wang, and T, Xiang, PRX 9, 031041 (2019)
J. Hasik, D. Poilblanc, F. Becca, SciPost Phys. 10, 012 (2021)

Energy gradient

Energy calculated approximately with CTM:

Energy gradient

Energy calculated approximately with CTM:

With $\left(C_{k}, T_{k}\right) \equiv x_{k}=f\left(x_{k-1}, A\right)$

Energy gradient

Energy calculated approximately with CTM:

$$
E \approx \tilde{E}=F\left(C_{n}, T_{n}, A, H\right)=
$$

With $\left(C_{k}, T_{k}\right) \equiv x_{k}=f\left(x_{k-1}, A\right)$ its gradient is:

$$
\begin{aligned}
d \tilde{E} & =\frac{\partial F}{\partial A} d A+\frac{\partial F}{\partial x_{n}} d x_{n} \\
d x_{n} & \left.=\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-1}}\left(\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-2}}(\ldots)\right)\right),
\end{aligned}
$$

Energy gradient

Energy calculated approximately with CTM:

$$
E \approx \tilde{E}=F\left(C_{n}, T_{n}, A, H\right)=
$$

With $\left(C_{k}, T_{k}\right) \equiv x_{k}=f\left(x_{k-1}, A\right)$ its gradient is:

$$
\begin{aligned}
d \tilde{E} & =\frac{\partial F}{\partial A} d A+\frac{\partial F}{\partial x_{n}} d x_{n} \\
d x_{n} & \left.=\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-1}}\left(\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-2}}(\ldots)\right)\right),
\end{aligned}
$$

Problems:

Energy gradient

Energy calculated approximately with CTM:

$$
E \approx \tilde{E}=F\left(C_{n}, T_{n}, A, H\right)=
$$

With $\left(C_{k}, T_{k}\right) \equiv x_{k}=f\left(x_{k-1}, A\right)$ its gradient is:

$$
\begin{aligned}
d \tilde{E} & =\frac{\partial F}{\partial A} d A+\frac{\partial F}{\partial x_{n}} d x_{n} \\
d x_{n} & \left.=\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-1}}\left(\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-2}}(\ldots)\right)\right),
\end{aligned}
$$

Problems:
(1) costly in memory, need for many iterations

Energy gradient

Energy calculated approximately with CTM:

$$
E \approx \tilde{E}=F\left(C_{n}, T_{n}, A, H\right)=
$$

With $\left(C_{k}, T_{k}\right) \equiv x_{k}=f\left(x_{k-1}, A\right)$ its gradient is:

$$
\begin{aligned}
d \tilde{E} & =\frac{\partial F}{\partial A} d A+\frac{\partial F}{\partial x_{n}} d x_{n} \\
d x_{n} & \left.=\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-1}}\left(\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-2}}(\ldots)\right)\right)
\end{aligned}
$$

Problems:
(1) costly in memory, need for many iterations
(2) gradient of EIG (SVD) poorly conditioned in case of degenerate spectra

Energy gradient

Energy calculated approximately with CTM:

$$
E \approx \tilde{E}=F\left(C_{n}, T_{n}, A, H\right)=
$$

With $\left(C_{k}, T_{k}\right) \equiv x_{k}=f\left(x_{k-1}, A\right)$ its gradient is:

$$
\begin{aligned}
d \tilde{E} & =\frac{\partial F}{\partial A} d A+\frac{\partial F}{\partial x_{n}} d x_{n} \\
d x_{n} & \left.=\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-1}}\left(\frac{\partial f}{\partial A} d A+\frac{\partial f}{\partial x_{n-2}}(\ldots)\right)\right),
\end{aligned}
$$

Problems:
(1) costly in memory, need for many iterations
(2) gradient of EIG (SVD) poorly conditioned in case of degenerate spectra
(0) currently only approximate!

Problem: Current derivative of EIG(SVD) is only approximate

Problem: Current derivative of EIG(SVD) is only approximate Solution: Calculate exact

$$
M=P C P^{\dagger}
$$

Problem: Current derivative of EIG(SVD) is only approximate Solution: Calculate exact

$$
M=P C P^{\dagger}+\underline{P_{\perp} C_{\perp}} P_{\perp}^{\dagger}
$$

Problem: Current derivative of EIG(SVD) is only approximate Solution: Calculate exact

$$
M=P C P^{\dagger}+\underline{P_{\perp} C_{\perp} P_{\perp}^{\dagger}}
$$

With $P P^{\dagger}+P_{\perp} P_{\perp}^{\dagger}=\mathbb{I}$, leading to Sylvester equation for $d P$:

$$
\left(\mathbb{I}-P P^{\dagger}\right) d M P=d P C-\underline{\left(\mathbb{I}-P P^{\dagger}\right) M d P}
$$

Problem: divergencies in the gradient of EIG(SVD)

Problem: divergencies in the gradient of EIG(SVD)
Solution: Q-deformed CTM with $Q=\mathbb{I}$
(A) Q-deformation step

(B) Gauge transformation

Problem: divergencies in the gradient of EIG(SVD)
Solution: Q-deformed CTM with $Q=\mathbb{I}$
(A) Q-deformation step

(B) Gauge transformation

regular CTM:

$$
\begin{aligned}
d C & =\mathbb{I} \circ\left(P^{\dagger} d M P\right) \\
P^{\dagger} d P & =F \circ\left(P^{\dagger} d M P\right), \quad F_{i j}=1 /\left(c_{j}-c_{i}\right)
\end{aligned}
$$

Problem: divergencies in the gradient of EIG(SVD)
Solution: Q-deformed CTM with $Q=\mathbb{I}$
(A) Q-deformation step

(B) Gauge transformation

regular CTM:

$$
\begin{array}{rlrlr}
d C & =\mathbb{I} \circ\left(P^{\dagger} d M P\right) & & \rightarrow & d C \\
P^{\dagger} d P & =F \circ\left(P^{\dagger} d M P\right), \quad F_{i j}=1 /\left(c_{j}-c_{i}\right) & & P^{\dagger} d P & =0
\end{array}
$$

Q-deformed CTM:

Problem: memory intensive, many iterations

Problem: memory intensive, many iterations
Solution: fixed point differentiation

Problem: memory intensive, many iterations
Solution: fixed point differentiation
if $x=f(A, x)$:

Problem: memory intensive, many iterations
Solution: fixed point differentiation

$$
\text { if } x=f(A, x) \text { : }
$$

$$
d x=\sum_{k=0}^{\infty}\left(\frac{\partial f}{\partial x}\right)^{k} \frac{\partial f}{\partial A} d A=\left(1-\frac{\partial f}{\partial x}\right)^{-1} \frac{\partial f}{\partial A} d A .
$$

Problem: memory intensive, many iterations
Solution: fixed point differentiation
if $x=f(A, x)$:

$$
d x=\sum_{k=0}^{\infty}\left(\frac{\partial f}{\partial x}\right)^{k} \frac{\partial f}{\partial A} d A=\left(1-\frac{\partial f}{\partial x}\right)^{-1} \frac{\partial f}{\partial A} d A .
$$

But: requires element-wise convergence $x=f(x, A)$

Problem: memory intensive, many iterations
Solution: fixed point differentiation
if $x=f(A, x)$:

$$
d x=\sum_{k=0}^{\infty}\left(\frac{\partial f}{\partial x}\right)^{k} \frac{\partial f}{\partial A} d A=\left(1-\frac{\partial f}{\partial x}\right)^{-1} \frac{\partial f}{\partial A} d A .
$$

But: requires element-wise convergence $x=f(x, A)$
EIG(SVD) is not unique, so gauge fixing is required:

Problem: memory intensive, many iterations
Solution: fixed point differentiation
if $x=f(A, x)$:

$$
d x=\sum_{k=0}^{\infty}\left(\frac{\partial f}{\partial x}\right)^{k} \frac{\partial f}{\partial A} d A=\left(1-\frac{\partial f}{\partial x}\right)^{-1} \frac{\partial f}{\partial A} d A .
$$

But: requires element-wise convergence $x=f(x, A)$
EIG(SVD) is not unique, so gauge fixing is required:

$$
U C U^{\dagger}=(U \sigma) C\left(\sigma^{\dagger} U^{\dagger}\right) \Rightarrow \hat{T} \xrightarrow{\mathrm{f}} \sigma^{\dagger} \hat{T} \sigma=T .
$$

Comparison of gradients

Comparison of gradients

State: $|\Psi\rangle=\left|\varphi_{N N}^{\mathrm{RVB}}\right\rangle+\left|\varphi_{\text {long }}^{\mathrm{RVB}}\right\rangle+\beta\left|\varphi_{3}\right\rangle$, with $D=3, \chi=160$
Hamiltonian: $H=J_{1} \sum_{i, j \in N N, \alpha} f(\alpha) S_{i}^{\alpha} S_{j}^{\alpha}+J_{2} \sum_{i, j \in N N N} \vec{S}_{i} \cdot \vec{S}_{j}$
with $S U(2)$ symmetry breaking anisotropy $f([x, y, z])=[-1,1+\beta,-1+\beta]$

Comparison of gradients

State: $|\Psi\rangle=\left|\varphi_{N N}^{\mathrm{RVB}}\right\rangle+\left|\varphi_{\text {long }}^{\mathrm{RVB}}\right\rangle+\beta\left|\varphi_{3}\right\rangle$, with $D=3, \chi=160$ Hamiltonian: $H=J_{1} \sum_{i, j \in N N, \alpha} f(\alpha) S_{i}^{\alpha} S_{j}^{\alpha}+J_{2} \sum_{i, j \in N N N} \vec{S}_{i} \cdot \vec{S}_{j}$ with $\operatorname{SU}(2)$ symmetry breaking anisotropy $f([x, y, z])=[-1,1+\beta,-1+\beta]$

$F_{i j} \rightarrow \frac{c_{j}-c_{i}}{\left(c_{j}-c_{i}\right)^{2}+\epsilon}$

- our gradient g_{e}
- Case 1: $d P=0$
- Case 2: current AD
- Case 3: using Sylvester equation for $d P$

Conclusions

Conclusions

We significantly improved the AD for PEPS optimization problems:

- stability
- accuracy

Conclusions

We significantly improved the AD for PEPS optimization problems:

- stability
- accuracy

PEPS libraries cannot yet be treated as blackbox like with DMRG

Conclusions

We significantly improved the AD for PEPS optimization problems:

- stability
- accuracy

PEPS libraries cannot yet be treated as blackbox like with DMRG
$A D$ is a great tool if used carefully:

- reduces workcost
- eliminates bugs
- allows for more efficient algorithms

Conclusions

We significantly improved the AD for PEPS optimization problems:

- stability
- accuracy

PEPS libraries cannot yet be treated as blackbox like with DMRG
AD is a great tool if used carefully:

- reduces workcost
- eliminates bugs
- allows for more efficient algorithms
- may allow to reach higher bond dimensions D, χ and hence higher correlation lengths ξ, tackle challenging problems with bigger accuracy

Thank You

[^0]: ${ }^{1}$ https://arxiv.org/abs/2208.08713
 ${ }^{2}$ https://arxiv.org/abs/2311.11894

[^1]: ${ }^{1}$ https://arxiv.org/abs/2208.08713
 ${ }^{2}$ https://arxiv.org/abs/2311.11894

[^2]: ${ }^{1}$ https://arxiv.org/abs/2208.08713
 ${ }^{2}$ https://arxiv.org/abs/2311.11894

