Faster accurate sketching for tensor decompositions and tensor networks

Linjian Ma and Edgar Solomonik
Department of Computer Science
University of Illinois Urbana-Champaign
Tensor Networks Reading Group

February 20th, 2024

Presentation overview

Fast and accurate randomized algorithms for low-rank tensor decompositions, NeurIPS 2021

- problem: efficiently sketch the (standard) HOOI algorithm for low-rank Tucker decomposition of sparse tensors
- results: algorithms based on leverage score sampling and TensorSketch; error bounds and experimental analysis

Cost-efficient Gaussian tensor network embeddings for tensor-structured inputs, NeurIPS 2022

- problem: if X is represented by a tensor network, choose a tensor network sketch S to minimize cost of sketching (computing $S X$)
- results: sufficient condition for JL lemma for any tensor network graph, cost-optimal tensor network sketch under this condition

Tensor

Tensor: multi-dimensional array of data

- Order: number of dimensions of a tensor
- Dimension size: number of elements in each dimension

vector	matrix	third order tensor
$\left[\begin{array}{l} 4 \\ 5 \end{array}\right]$	$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$	

Tensors occur in

- Data science: image, video, medical data...
- Scientific computing: discretization of high-dimensional functions
- Quantum physics and quantum computing: wavefunction, Hamiltonian, quantum gate

Tensor diagram notation

Tensor diagram: an order N tensor is represented by a vertex with N adjacent edges

Scalar Vector Matrix
Order 3 tensor

Matricization: transform a tensor into a matrix

\[

\]

$$
k\left[\begin{array}{llll}
c & i, j \\
1 & 3 & 2 & 4 \\
5 & 7 & 6 & 8
\end{array}\right]
$$

Tensor contraction

Tensor contraction: summing element products from two tensors over contracted dimensions
A dimension (edge) is contracted if it has no open end
Examples:

(a) ${ }^{i}$ (b)

Inner product: $\sum_{i} a_{i} b_{i} \quad$ Matrix product : $C_{i k}=\sum_{j} A_{i j} B_{j k}$

Tensor times matrix: $C_{i l k}=\sum_{j} A_{i l j} B_{j k}$

Kronecker/outer product: $T_{i j k l}=A_{i k} B_{j l}$

Khatri-Rao product: $T_{i j l}=A_{i l} B_{j l}$

Tensor decomposition: break the curse of dimensionality

Matrix factorization:

Tensor decomposition: represents a tensor with a (low-rank) tensor network

decompose

$$
\longrightarrow
$$

Tensor train decomposition

(Rank-constrained) linear least squares with tensor networks

$$
\min _{X, \operatorname{rank}(X) \leq R}\|L X-Y\|_{F}
$$

Tucker decomposition

CP decomposition

Tensor train truncation

Sketching for linear least squares

Sketching: randomly project a data L to low dimensional spaces

- $L \in \mathbb{R}^{s \times n}, S \in \mathbb{R}^{m \times s}$ with the sketch size $m \ll s$
- S is a random matrix (called embedding)

Sketching for linear least squares

Sketching: randomly project a data L to low dimensional spaces

- $L \in \mathbb{R}^{s \times n}, S \in \mathbb{R}^{m \times s}$ with the sketch size $m \ll s$
- S is a random matrix (called embedding)

Standard LLS:

$$
X^{*}=\underset{X}{\operatorname{argmin}}\|L X-Y\|_{F}
$$

$$
\hat{X}=\underset{X}{\operatorname{argmin}}\|S L X-S Y\|_{F}
$$

- Gaussian random matrix is standard for embedding
- Sparse embedding ${ }^{1}$ can be used when L, Y are sparse (computing $S L$ only costs nnz (L))

[^0]
Sketching general tensor networks

Problem: Find a tensor network embedding S for the tensor network X, so that

- The embedding is (ϵ, δ)-accurate
- The sketch size (number of rows of S) is low
- Asymptotic cost to compute $S X$ is minimized

An (oblivious) embedding $S \in \mathbb{R}^{m \times s}$ is (ϵ, δ)-accurate if ${ }^{1}$

$$
\operatorname{Pr}\left[\left|\frac{\|S x\|_{2}-\|x\|_{2}}{\|x\|_{2}}\right|>\epsilon\right] \leq \delta \quad \text { for any } x \in \mathbb{R}^{s}
$$

[^1]
Outline: sketching for tensor networks

$$
\min _{X}\|L X-Y\|_{F} \quad \rightarrow \quad \min _{X}\|S L X-S Y\|_{F}
$$

Sketching for low-rank Tucker decomposition of large and sparse tensors

- L is a Kronecker product of matrices and has orthonormal columns
- A new sketch size upper bound on the problem
- Reach at least 98% of the standard algorithm's accuracy with better cost

Outline: sketching for tensor networks

$$
\min _{X}\|L X-Y\|_{F} \quad \rightarrow \quad \min _{X}\|S L X-S Y\|_{F}
$$

Sketching for low-rank Tucker decomposition of large and sparse tensors

- L is a Kronecker product of matrices and has orthonormal columns
- A new sketch size upper bound on the problem
- Reach at least 98% of the standard algorithm's accuracy with better cost

A cost-efficient algorithm to sketch arbitrary tensor network

- L has arbitrary tensor network structure
- Find accurate and cost-optimal embeddings S
- Asymptotically faster than previous works for CP decomposition

Alternating least squares for Tucker decomposition

Tucker decomposition

$$
\min _{G, A, B, C} \sum_{i, j, k}\left(T_{i j k}-\sum_{a, b, c} G_{a b c} A_{i a} B_{j b} C_{k c}\right)^{2}
$$

- $T \in \mathbb{R}^{s \times s \times s}, X \in \mathbb{R}^{R \times R \times R}$
- $A, B, C \in \mathbb{R}^{s \times R}$ with orthonormal columns, $R<s$

Alternating least squares for Tucker decomposition

Tucker decomposition

$$
\min _{G, A, B, C} \sum_{i, j, k}\left(T_{i j k}-\sum_{a, b, c} G_{a b c} A_{i a} B_{j b} C_{k c}\right)^{2}
$$

- $T \in \mathbb{R}^{s \times s \times s}, X \in \mathbb{R}^{R \times R \times R}$

- $A, B, C \in \mathbb{R}^{s \times R}$ with orthonormal columns, $R<s$

Higher order orthogonal iteration $(\mathrm{HOOI})^{1}$

$$
\min _{X, \operatorname{rank}(X) \leq R}\|L X-Y\|_{F}
$$

- Costs $\Omega(\mathrm{nnz}(T) R)$ for arbitrary tensor order
- Fast convergence (usually in around 10 iterations)

[^2]
Sketching for Tucker decomposition: previous work

Sketch alternating unconstrained least squares (AULS) ${ }^{1}$

- Advantage: cost with t iterations is $O\left(\mathrm{nnz}(T)+t\left(s R^{5}+R^{7}\right)\right)$
- Disadvantage: not an orthogonal iteration and has slow convergence

Apply sketching on high-order SVD²

- Apply randomized SVD on matricizations of T
- Disadvantages: accuracy lower than HOOI and costs $\Omega(\mathrm{nnz}(T) R)$

[^3]
Sketched HOOI for Tucker decomposition

$$
\min _{X, \operatorname{rank}(X) \leq R}\|L \quad X-Y\|_{F}
$$

HOOI: solve and truncate

$$
X^{*} \leftarrow \underset{X}{\operatorname{argmin}}\|L X-Y\|_{F}^{2}
$$

$X_{R}^{*} \leftarrow$ rank- R approximation of X^{*}

$$
G A \leftarrow X_{R}^{*}
$$

Sketched HOOI: sketch, solve and truncate

$$
\hat{X} \leftarrow \underset{X}{\operatorname{argmin}}\|S L X-S Y\|_{F}^{2}
$$

$\hat{X}_{R} \leftarrow$ rank- R approximation of \hat{X}

$$
\hat{G} \hat{A} \leftarrow \hat{X}_{R}
$$

Sketched HOOI for Tucker decomposition

We use efficient embeddings S for solving $\min _{X}\|S L X-S Y\|_{F}^{2}$

- L is a Kronecker product of factor matrices and changes over iterations
- Y is a matricization of the input tensor and can be sparse

Leverage score sampling

- Sample each row of L based on the leverage score vector $\ell(L)$

Tensorsketch: tensorized Countsketch ${ }^{1}$
-(5)- Countsketch matrix
-(IV- DFT matrix

[^4]
Sketched HOOI for Tucker decomposition

We derive sketch size bounds so that

$$
\left\|L \hat{X}_{R}-Y\right\|_{F}^{2} \leq(1+O(\epsilon))\left\|L X_{R}^{*}-Y\right\|_{F}^{2}
$$

- X_{R}^{*}, \hat{X}_{R} : optimal and the sketched solution
- We apply Mirsky's inequality ${ }^{1}$ to bound change in singular values of the sketched L
- Sketch size upper bound is at most $O(1 / \epsilon)$ times that for unconstrained LS

[^5]
Sketched HOOI for Tucker decomposition

We derive sketch size bounds so that

$$
\left\|L \hat{X}_{R}-Y\right\|_{F}^{2} \leq(1+O(\epsilon))\left\|L X_{R}^{*}-Y\right\|_{F}^{2}
$$

- X_{R}^{*}, \hat{X}_{R} : optimal and the sketched solution
- We apply Mirsky's inequality ${ }^{1}$ to bound change in singular values of the sketched L
- Sketch size upper bound is at most $O(1 / \epsilon)$ times that for unconstrained LS

Algorithm performs well in experiments

- Sketched HOOI converges to at least 98% of the accuracy of standard HOO
- With leverage score sampling, cost with t iterations is $O\left(\mathrm{nnz}(T)+t\left(s R^{3}+R^{6}\right)\right)$

[^6]
Experiments: tensors with spiked signal

(a) 5 sweeps, sample size $16 R^{2}$

(b) 5 sweeps, sample size $K R^{2}$

(c) sample size $16 R^{2}$

- $T=T_{0}+\sum_{i=1}^{5} \lambda_{i} a_{i} \circ b_{i} \circ c_{i}$, each a_{i}, b_{i}, c_{i} has unit 2-norm, $\lambda_{i}=3 \frac{\left\|T_{0}\right\|_{F}}{i^{1.5}}$
- Leading low-rank components obey the power-law distribution
- Tensor size $200 \times 200 \times 200, R=5$
- TS-ref: sketched AULS with TensorSketch

Sketching general tensor networks

Goal: accurately and efficiently sketch arbitrary tensor network structure

Sketching general tensor networks

Previous work:

- Kronecker product embedding ${ }^{1}$: inefficient in computational cost
- Tree embedding (e.g. tensor train) ${ }^{1,2}$: efficient for specific data (Kronecker product, tensor train), but efficiency unclear for general tensor network data

[^7]
Sketching general tensor networks

Previous work:

- Kronecker product embedding ${ }^{1}$: inefficient in computational cost
- Tree embedding (e.g. tensor train) ${ }^{1,2}$: efficient for specific data (Kronecker product, tensor train), but efficiency unclear for general tensor network data

Assumptions throughout our analysis:

- Multiply $A, B \in \mathbb{R}^{n \times n}$ has a cost of $O\left(n^{3}\right)$
- S is a Gaussian tensor network defined on graphs
- Each dimension to be sketched has large size

[^8]
Sufficient condition for (ϵ, δ)-accurate embedding

The embedding is accurate if we can rewrite $S=S_{1} \cdots S_{N}$ and

- S_{i} is the Kronecker product of A_{i} (a Gaussian random matrix) and identity matrices - A_{i} has row size $\Omega\left(N \log (1 / \delta) / \epsilon^{2}\right)$

Sufficient condition for (ϵ, δ)-accurate embedding

The embedding is accurate if we can rewrite $S=S_{1} \cdots S_{N}$ and

- S_{i} is the Kronecker product of A_{i} (a Gaussian random matrix) and identity matrices
- A_{i} has row size $\Omega\left(N \log (1 / \delta) / \epsilon^{2}\right)$

Two key prior results used in the proof ${ }^{1}$

- If A_{i} is (ϵ, δ)-accurate, so is the Kronecker product between A_{i} and identity matrices
- If S_{1}, \ldots, S_{N} are $(\epsilon / \sqrt{N}, \delta)$-accurate, $S_{1} \cdots S_{N}$ is $(O(\epsilon), \delta)$-accurate

[^9]
A sketching algorithm with efficient computational cost and sketch size

Embedding containing a Kronecker product embedding + bi-
 nary tree of gadgets

Each small gadget sketches the product of two tensors

- Each gadget contains a pair of tensors
- Dimension sizes in each gadget are chosen based on data tensors to minimize cost
- Can reduce cost by $O(\sqrt{m})$ compared to containing one tensor

Analysis of the algorithm

c: asymptotic sketching cost for our algorithm
$c_{\text {opt }}$: optimal asymptotic sketching cost under the embedding sufficient condition m : sketch size

Input data tensor network structure	Optimality of the algorithm
General hypergraph	$c=O\left(\sqrt{m} \cdot c_{\mathrm{opt}}\right)$
General graph	$c=O\left(m^{0.375} \cdot c_{\mathrm{opt}}\right)$
Each data tensor has a dimension to be sketched (e.g. Kronecker product, tensor train)	$c=c_{\mathrm{opt}}$

Analysis of the algorithm

Lower bound analysis

- When the data contains 2 tensors, sketching lower bound can be derived
- Kronecker product case: when the data has two vectors with size m (sketch size), the sketching computational cost is $\Omega\left(m^{2.5}\right)$
- When the data has more tensors, for a given contraction path the lower bound is the sum of two-tensor-contraction lower bounds
Algorithm design
- For the 2-tensor data, can design embedding attaining the lower bound

- For the data with more tensors, we can derive the optimal way to sketch using the two-tensor scheme for a given contraction path
- We can try all data contraction paths to get the optimal sketching path

Experiments: sketching a tensor train data

- Input tensor train: order 6 , each dimension size $s=500$ with varying rank
- TN embedding: Kronecker product + a binary tree of small gadgets
- Tree embedding: Kronecker product + a binary tree tensor network
- Sketching error is within 0.1
- Our TN embedding achieves the best asymptotic cost for all tensor train ranks

Experiments: sketching a Kronecker product data

- Input data: each dimension size $s=1000$ with varying number of orders
- Sketching error is within 0.1
- Our TN embedding achieves the best asymptotic cost
- TN, tree, and tensor train embeddings have efficient sketch size

Application: CP decomposition with alternating least squares

Algorithm for CP-ALS	per-iteration cost	preparation cost
standard ALS	$\Theta\left(s^{N} R\right)$	$/$
leverage score sampling ${ }^{1}$	$\tilde{\Theta}\left(N\left(R^{N+1}+s R^{N}\right) / \epsilon^{2}\right)$	$\Theta\left(s^{N}\right)$
recursive leverage score sampling ${ }^{2}$	$\tilde{\Theta}\left(N^{2}\left(R^{4}+N s R^{3} / \epsilon\right) / \delta\right)$	$\Theta\left(s^{N}\right)$
Our algorithm	$\tilde{\Theta}\left(N^{2}\left(N^{1.5} R^{3.5} / \epsilon^{3}+s R^{2}\right) / \epsilon^{2}\right)$	$\Theta\left(s^{N} m\right)$

- When performing a low-rank CP decomposition with $s \gg R^{1.5}$, our algorithm is $\Theta(N R \epsilon / \delta)=\Omega(N R)$ times better than the recursive leverage score sampling
- Larger preparation cost is needed
- Sparse tensor network embeddings based on CountSketch and sampling ${ }^{3}$ can be used to reduce the preparation cost and have better dependency on ϵ, N

[^10]
Application: truncation of high-rank tensor train

Standard tensor train truncation algorithms have a cost of $\Theta\left(N s R^{3}\right)$, we can achieve a better cost of $\Theta\left(N s R^{2}(N r)\right)$ using sketching when $R>N r$

- Use randomized range finder with TN embedding to reduce the bond dimension to $m=\Theta(N r)$

Dimension sizes:

- Use the standard truncation algorithm to reduce the bond dimension from $m=\Theta(N r)$ to r

$\xrightarrow[\Theta\left(N^{3} s r^{3}\right)]{\text { Truncate }}$

Application: truncation of high-rank tensor train

- Analysis assumes each physical dimension size s greater than the output tensor train rank r
- When $s<r$, using our embedding without the Kronecker product part can still yield a cost of $\Theta\left(N^{2} s R^{2} r\right)$
- The cost $\Theta\left(N^{2} s R^{2} r\right)$ attains the asymptotic cost lower bound under the embedding sufficient condition
- Previous work ${ }^{1}$ uses tensor train embedding on tensor train truncation, and our analysis shows it yields the same asymptotic cost and is also efficient

[^11]
Conclusion

Sketching for low-rank Tucker decomposition of large and sparse tensors

- Accurately sketch rank-constrained linear least squares problem arising in Tucker ALS
- Reach at least 98% of the standard algorithm's accuracy with input-sparsity cost

A cost-efficient algorithm to sketch arbitrary tensor network

- Seek cost-optimal accurate embeddings for a given tensor network-structured input data
- Achieve asymptotically faster sketching algorithms for low-rank tensor network approximations

Backup slides

Example: sketching Kronecker product data

Consider contracting an input Kronecker product from left to the right

Sketching contraction path as follows

Our algorithm reduces cost by up to $O(\sqrt{m})$ for the same accuracy compared to using tree embeddings ${ }^{1}$

[^12]
Randomized SVD using sketching

Given a matrix $A \in \mathbb{R}^{m \times n}$, find a rank- r approximation with $r \ll m, n$ in the SVD form
Randomized range finder ${ }^{1}$

- Generate a random embedding matrix $\Omega \in \mathbb{R}^{n \times \Theta(r)}$

- $Q, R \leftarrow \operatorname{qr}(A \Omega)$, so $Q \in \mathbb{R}^{m \times \Theta(r)}$

Dimensionality reduction

- $B \leftarrow Q^{T} A$

SVD on the low-rank matrix $Q B$

- $Q_{B}, \Sigma, V_{B}^{T} \leftarrow \operatorname{svd}(B)$
- Return $Q Q_{B}, \Sigma, V_{B}^{T}$

[^13]
Sketched rank-constrained linear least squares problem

Proof sketch: when S is a $(1 / 2, \delta, \epsilon)$-accurate sketching matrix

$$
\begin{gathered}
\left\|L P_{R}-Y\right\|_{F}^{2}=\left\|Y^{\perp}\right\|_{F}^{2}+\underbrace{\left\|P_{R}-P_{\mathrm{opt}}\right\|_{F}^{2}}_{\text {low rank truncation error }} \\
\left\|L \widehat{P}_{R}-Y\right\|_{F}^{2}=\left\|Y^{\perp}\right\|_{F}^{2}+\underbrace{\left\|\widehat{P}_{\mathrm{opt}}-P_{\mathrm{opt}}\right\|_{F}^{2}}_{\text {sketched least squares error }}+\underbrace{\left\|\widehat{P}_{\mathrm{R}}-\widehat{P}_{\mathrm{opt}}\right\|_{F}^{2}+2\left\langle\widehat{P}_{\mathrm{R}}-\widehat{P}_{\mathrm{opt}}, \widehat{P}_{\mathrm{opt}}-P_{\mathrm{opt}}\right\rangle_{F}}_{\text {sketched low rank truncation error }}
\end{gathered}
$$

Sketched rank-constrained linear least squares problem

Proof sketch: when S is a $(1 / 2, \delta, \epsilon)$-accurate sketching matrix

$$
\begin{gathered}
\left\|L P_{R}-Y\right\|_{F}^{2}=\left\|Y^{\perp}\right\|_{F}^{2}+\underbrace{\left\|P_{R}-P_{\mathrm{opt}}\right\|_{F}^{2}}_{\text {low rank truncation error }} \\
\left\|L \widehat{P}_{R}-Y\right\|_{F}^{2}=\left\|Y^{\perp}\right\|_{F}^{2}+\underbrace{\left\|\widehat{P}_{\mathrm{opt}}-P_{\mathrm{opt}}\right\|_{F}^{2}}_{\text {sketched least squares error }}+\underbrace{\left\|\widehat{P}_{\mathrm{R}}-\widehat{P}_{\mathrm{opt}}\right\|_{F}^{2}+2\left\langle\widehat{P}_{\mathrm{R}}-\widehat{P}_{\mathrm{opt}}, \widehat{P}_{\mathrm{opt}}-P_{\mathrm{opt}}\right\rangle_{F}}_{\text {sketched low rank truncation error }}
\end{gathered}
$$

- $\left\|\widehat{P}_{\text {opt }}-P_{\text {opt }}\right\|_{F}^{2}=O\left(\epsilon^{2}\right)\left\|Y^{\perp}\right\|_{F}^{2}$ (Drineas et al., Numerische mathematik 2011)
- $\left\|\widehat{P}_{\mathrm{R}}-\widehat{P}_{\text {opt }}\right\|_{F}^{2}=\left\|P_{R}-P_{\text {opt }}\right\|_{F}^{2}+O(\epsilon)\left\|L P_{R}-Y\right\|_{F}^{2}$ (Mirsky's inequality, (Mirsky, The Quarterly journal of mathematics, 1960))
- $\left\langle\widehat{P}_{\mathrm{R}}-\widehat{P}_{\mathrm{opt}}, \widehat{P}_{\mathrm{opt}}-P_{\mathrm{opt}}\right\rangle_{F}=O(\epsilon)\left\|L P_{R}-Y\right\|_{F}^{2}$ (Mirsky's inequality)

Application: randomized hierarchical SVD for tensor train truncation

Use randomized range finder to reduce the bond dimension to $m=\Theta$ (Nr)
Dimension sizes:

[^0]: ${ }^{1}$ Charikar et al, Finding frequent items in data streams, 2002

[^1]: ${ }^{1}$ Woodruff, Sketching as a tool for numerical linear algebra, 2014

[^2]: ${ }^{1}$ Lathauwer et al, On the best rank- 1 and rank- $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ approximation of higher-order tensors, SIMAX 2000

[^3]: ${ }^{1}$ Malik and Becker, Low-rank tucker decomposition of large tensors using Tensorsketch, NeurIPS 2018
 ${ }^{2}$ Ahmadi-Asl et al, Randomized algorithms for computation of Tucker decomposition and HOSVD, IEEE Access 2021

[^4]: ${ }^{1}$ Pham and Pagh, Fast and scalable polynomial kernels via explicit feature maps, KDD 2013

[^5]: ${ }^{1}$ Mirsky, The Quarterly journal of mathematics, 1960

[^6]: ${ }^{1}$ Mirsky, The Quarterly journal of mathematics, 1960

[^7]: ${ }^{1}$ Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
 ${ }^{2}$ Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020

[^8]: ${ }^{1}$ Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
 ${ }^{2}$ Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020

[^9]: ${ }^{1}$ Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020

[^10]: ${ }^{1}$ Larsen and Kolda, Practical leverage-based sampling for low-rank tensor decomposition, SIMAX 2022
 ${ }^{2}$ Malik, More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees, ICML 2022
 ${ }^{3}$ Bharadwaj et al, Fast exact leverage score sampling from Khatri-Rao products with applications to tensor decomposition, Neurips 2023.

[^11]: ${ }^{1}$ Daas et al, Randomized algorithms for rounding in the Tensor-Train format, SISC 2023

[^12]: ${ }^{1}$ Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020

[^13]: ${ }^{1}$ Nathan, Martinsson, and Tropp, Finding structure with randomness, SIAM review 2011

