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Presentation overview

Fast and accurate randomized algorithms for low-rank tensor decompositions, NeurIPS 2021

problem: efficiently sketch the (standard) HOOI algorithm for low-rank Tucker
decomposition of sparse tensors

results: algorithms based on leverage score sampling and TensorSketch; error bounds and
experimental analysis

Cost-efficient Gaussian tensor network embeddings for tensor-structured inputs, NeurIPS 2022

problem: if X is represented by a tensor network, choose a tensor network sketch S to
minimize cost of sketching (computing SX )

results: sufficient condition for JL lemma for any tensor network graph, cost-optimal
tensor network sketch under this condition
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Tensor

Tensor: multi-dimensional array of data
Order: number of dimensions of a tensor
Dimension size: number of elements in each dimension

Tensors occur in
Data science: image, video, medical data...
Scientific computing: discretization of high-dimensional functions
Quantum physics and quantum computing: wavefunction, Hamiltonian, quantum gate
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Tensor diagram notation

Tensor diagram: an order N tensor is represented by a vertex
with N adjacent edges

Scalar Vector Matrix Order 3
tensor

Matricization: transform a tensor into a matrix
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Tensor contraction

Tensor contraction: summing element products from two tensors over contracted dimensions

A dimension (edge) is contracted if it has no open end

Examples:
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Tensor decomposition: break the curse of dimensionality

Matrix factorization:

Tensor decomposition: represents a tensor with a (low-rank) tensor network
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(Rank-constrained) linear least squares with tensor networks
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Sketching for linear least squares

Sketching: randomly project a data L to low dimensional spaces
L −→ SL

L ∈ Rs×n, S ∈ Rm×s with the sketch size m≪ s
S is a random matrix (called embedding)

Standard LLS:

X ∗ = argmin
X
∥LX − Y ∥F

Sketched LLS:

X̂ = argmin
X
∥SLX − SY ∥F

Gaussian random matrix is standard for embedding
Sparse embedding1 can be used when L, Y are sparse (computing SL only costs nnz(L))

1Charikar et al, Finding frequent items in data streams, 2002
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Sketching general tensor networks

Problem: Find a tensor network embedding S for the tensor network
X , so that

The embedding is (ϵ, δ)-accurate

The sketch size (number of rows of S) is low

Asymptotic cost to compute SX is minimized

An (oblivious) embedding S ∈ Rm×s is (ϵ, δ)-accurate if1

Pr
[∣∣∣∣∥Sx∥2 − ∥x∥2

∥x∥2

∣∣∣∣ > ϵ

]
≤ δ for any x ∈ Rs

1Woodruff, Sketching as a tool for numerical linear algebra, 2014
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Outline: sketching for tensor networks

min
X
∥LX − Y ∥F → min

X
∥SLX − SY ∥F

Sketching for low-rank Tucker decomposition of large and sparse tensors
L is a Kronecker product of matrices and has orthonormal columns
A new sketch size upper bound on the problem
Reach at least 98% of the standard algorithm’s accuracy with better cost

A cost-efficient algorithm to sketch arbitrary tensor network
L has arbitrary tensor network structure
Find accurate and cost-optimal embeddings S
Asymptotically faster than previous works for CP decomposition
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Alternating least squares for Tucker decomposition

Tucker decomposition

min
G,A,B,C

∑
i ,j,k

(
Tijk −

∑
a,b,c

GabcAiaBjbCkc
)2

T ∈ Rs×s×s , X ∈ RR×R×R

A, B, C ∈ Rs×R with orthonormal columns, R < s

Higher order orthogonal iteration (HOOI)1

Costs Ω(nnz(T )R) for arbitrary tensor order
Fast convergence (usually in around 10 iterations)

1Lathauwer et al, On the best rank-1 and rank-(R1, R2, . . . , Rn) approximation of higher-order tensors, SIMAX 2000
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Sketching for Tucker decomposition: previous work

Sketch alternating unconstrained least squares (AULS)1

Advantage: cost with t iterations is O
(
nnz(T ) + t

(
sR5 + R7))

Disadvantage: not an orthogonal iteration and has slow convergence

Apply sketching on high-order SVD2

Apply randomized SVD on matricizations of T
Disadvantages: accuracy lower than HOOI and costs Ω(nnz(T )R)

1Malik and Becker, Low-rank tucker decomposition of large tensors using Tensorsketch, NeurIPS 2018
2Ahmadi-Asl et al, Randomized algorithms for computation of Tucker decomposition and HOSVD, IEEE Access 2021
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Sketched HOOI for Tucker decomposition

HOOI: solve and truncate

X ∗ ← argmin
X
∥LX − Y ∥2F

X ∗
R ← rank-R approximation of X ∗

GA← X ∗
R

Sketched HOOI: sketch, solve and truncate

X̂ ← argmin
X
∥SLX − SY ∥2F

X̂R ← rank-R approximation of X̂

ĜÂ← X̂R
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Sketched HOOI for Tucker decomposition

We use efficient embeddings S for solving minX ∥SLX − SY ∥2F
L is a Kronecker product of factor matrices and changes over iterations
Y is a matricization of the input tensor and can be sparse

Leverage score sampling

Sample each row of L based on the
leverage score vector ℓ(L)

Tensorsketch: tensorized Countsketch1

1Pham and Pagh, Fast and scalable polynomial kernels via explicit feature maps, KDD 2013
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Sketched HOOI for Tucker decomposition

We derive sketch size bounds so that∥∥∥LX̂R − Y
∥∥∥2

F
≤ (1 + O(ϵ)) ∥LX ∗

R − Y ∥2F

X ∗
R , X̂R : optimal and the sketched solution

We apply Mirsky’s inequality1 to bound change in singular values of the sketched L
Sketch size upper bound is at most O(1/ϵ) times that for unconstrained LS

Algorithm performs well in experiments
Sketched HOOI converges to at least 98% of the accuracy of standard HOOI
With leverage score sampling, cost with t iterations is O

(
nnz(T ) + t

(
sR3 + R6))

1Mirsky, The Quarterly journal of mathematics, 1960
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Experiments: tensors with spiked signal
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(a) 5 sweeps, sample size 16R2
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(b) 5 sweeps, sample size KR2
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(c) sample size 16R2

T = T0 +
∑5

i=1 λiai ◦ bi ◦ ci , each ai , bi , ci has unit 2-norm, λi = 3∥T0∥F
i1.5

Leading low-rank components obey the power-law distribution
Tensor size 200× 200× 200, R = 5
TS-ref: sketched AULS with TensorSketch
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Sketching general tensor networks

Goal: accurately and efficiently sketch arbitrary tensor network structure
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Sketching general tensor networks

Previous work:

Kronecker product embedding1: inefficient in computational cost

Tree embedding (e.g. tensor train)1,2: efficient for specific data (Kronecker product,
tensor train), but efficiency unclear for general tensor network data

Assumptions throughout our analysis:

Multiply A, B ∈ Rn×n has a cost of O(n3)

S is a Gaussian tensor network defined on graphs

Each dimension to be sketched has large size

1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
2Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020
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Sufficient condition for (ϵ, δ)-accurate embedding
The embedding is accurate if we can rewrite S = S1 · · · SN and

Si is the Kronecker product of Ai (a Gaussian random matrix) and identity matrices
Ai has row size Ω(N log(1/δ)/ϵ2)

Two key prior results used in the proof1

If Ai is (ϵ, δ)-accurate, so is the Kronecker product between Ai and identity matrices

If S1, . . . , SN are (ϵ/
√

N, δ)-accurate, S1 · · · SN is (O(ϵ), δ)-accurate
1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
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A sketching algorithm with efficient computational cost and sketch size

Embedding containing a Kronecker product embedding + bi-
nary tree of gadgets

Each small gadget sketches the product of two tensors

Each gadget contains a pair of tensors

Dimension sizes in each gadget are chosen based on data
tensors to minimize cost

Can reduce cost by O(
√

m) compared to containing one
tensor
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Analysis of the algorithm

c: asymptotic sketching cost for our algorithm

copt: optimal asymptotic sketching cost under the embedding sufficient condition

m: sketch size

Input data tensor network structure Optimality of the algorithm

General hypergraph c = O(
√

m · copt)

General graph c = O(m0.375 · copt)

Each data tensor has a dimension to be sketched
(e.g. Kronecker product, tensor train)

c = copt
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Analysis of the algorithm
Lower bound analysis

When the data contains 2 tensors, sketching lower bound can be derived
Kronecker product case: when the data has two vectors with size m (sketch size), the
sketching computational cost is Ω(m2.5)
When the data has more tensors, for a given contraction path the lower bound is the sum
of two-tensor-contraction lower bounds

Algorithm design
For the 2-tensor data, can design embedding attaining the lower bound

For the data with more tensors, we can derive the optimal way to sketch using the
two-tensor scheme for a given contraction path
We can try all data contraction paths to get the optimal sketching path
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Experiments: sketching a tensor train data
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Input tensor train: order 6, each dimension size s = 500 with varying rank
TN embedding: Kronecker product + a binary tree of small gadgets
Tree embedding: Kronecker product + a binary tree tensor network
Sketching error is within 0.1
Our TN embedding achieves the best asymptotic cost for all tensor train ranks
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Experiments: sketching a Kronecker product data
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Input data: each dimension size s = 1000 with varying number of orders
Sketching error is within 0.1
Our TN embedding achieves the best asymptotic cost
TN, tree, and tensor train embeddings have efficient sketch size
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Application: CP decomposition with alternating least squares

Algorithm for CP-ALS per-iteration cost preparation cost

standard ALS Θ(sNR) /

leverage score sampling1 Θ̃(N(RN+1 + sRN)/ϵ2) Θ(sN)

recursive leverage score sampling2 Θ̃(N2(R4 + NsR3/ϵ)/δ) Θ(sN)

Our algorithm Θ̃(N2(N1.5R3.5/ϵ3 + sR2)/ϵ2) Θ(sNm)

When performing a low-rank CP decomposition with s ≫ R1.5, our algorithm is
Θ(NRϵ/δ) = Ω(NR) times better than the recursive leverage score sampling
Larger preparation cost is needed
Sparse tensor network embeddings based on CountSketch and sampling3 can be used to
reduce the preparation cost and have better dependency on ϵ, N

1Larsen and Kolda, Practical leverage-based sampling for low-rank tensor decomposition, SIMAX 2022
2Malik, More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees, ICML 2022
3Bharadwaj et al, Fast exact leverage score sampling from Khatri-Rao products with applications to tensor

decomposition, Neurips 2023.
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Application: truncation of high-rank tensor train

Standard tensor train truncation algorithms have a cost of Θ(NsR3), we can achieve a better
cost of Θ(NsR2(Nr)) using sketching when R > Nr

Use randomized range finder with TN embedding to reduce the bond
dimension to m = Θ(Nr)

Use the standard truncation algorithm to reduce the bond dimension from m = Θ(Nr) to
r
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Application: truncation of high-rank tensor train

Analysis assumes each physical dimension size s greater than the output tensor train rank
r

When s < r , using our embedding without the Kronecker product part can still yield a
cost of Θ(N2sR2r)

The cost Θ(N2sR2r) attains the asymptotic cost lower bound under the embedding
sufficient condition

Previous work1 uses tensor train embedding on tensor train truncation, and our analysis
shows it yields the same asymptotic cost and is also efficient

1Daas et al, Randomized algorithms for rounding in the Tensor-Train format, SISC 2023
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Conclusion

Sketching for low-rank Tucker decomposition of large and sparse tensors
Accurately sketch rank-constrained linear least squares problem arising in Tucker ALS
Reach at least 98% of the standard algorithm’s accuracy with input-sparsity cost

A cost-efficient algorithm to sketch arbitrary tensor network
Seek cost-optimal accurate embeddings for a given tensor network-structured input data
Achieve asymptotically faster sketching algorithms for low-rank tensor network
approximations
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Backup slides
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Example: sketching Kronecker product data

Consider contracting an input Kronecker product from left to the right

Sketching contraction path as follows

Our algorithm reduces cost by up to O(
√

m) for the same accuracy compared to using tree
embeddings1

1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
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Randomized SVD using sketching

Given a matrix A ∈ Rm×n, find a rank-r approximation with r ≪ m, n in the SVD form

Randomized range finder1

Generate a random embedding matrix
Ω ∈ Rn×Θ(r)

Q, R ← qr(AΩ), so Q ∈ Rm×Θ(r)

Dimensionality reduction
B ← QT A

SVD on the low-rank matrix QB
QB, Σ, V T

B ← svd(B)
Return QQB, Σ, V T

B

1Nathan, Martinsson, and Tropp, Finding structure with randomness, SIAM review 2011
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Sketched rank-constrained linear least squares problem

Proof sketch: when S is a (1/2, δ, ϵ)-accurate sketching matrix

∥LPR − Y ∥2F =
∥∥∥Y ⊥

∥∥∥2

F
+ ∥PR − Popt∥2F︸ ︷︷ ︸

low rank truncation error∥∥∥LP̂R − Y
∥∥∥2

F
=

∥∥∥Y ⊥
∥∥∥2

F
+

∥∥∥P̂opt − Popt
∥∥∥2

F︸ ︷︷ ︸
sketched least squares error

+
∥∥∥P̂R − P̂opt

∥∥∥2

F
+ 2

〈
P̂R − P̂opt, P̂opt − Popt

〉
F︸ ︷︷ ︸

sketched low rank truncation error∥∥∥P̂opt − Popt
∥∥∥2

F
= O(ϵ2)

∥∥∥Y ⊥
∥∥∥2

F
(Drineas et al., Numerische mathematik 2011)∥∥∥P̂R − P̂opt

∥∥∥2

F
= ∥PR − Popt∥2F + O(ϵ) ∥LPR − Y ∥2F (Mirsky’s inequality, (Mirsky, The

Quarterly journal of mathematics, 1960))〈
P̂R − P̂opt, P̂opt − Popt

〉
F

= O(ϵ) ∥LPR − Y ∥2F (Mirsky’s inequality)
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Application: randomized hierarchical SVD for tensor train truncation

Use randomized range finder to reduce the bond dimension to m = Θ(Nr)
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