Introd	luction	
000	0000	

MultiHU-TD: Multifeature Hyperspectral Unmixing Based on **Tensor Decomposition**

Online Seminar for Tensor Network Reading Group Montreal Institute for Learning Algorithms (MILA), Quebec, Canada

Mohamad JOUNI

Co-authors: Mauro DALLA MURA, Lucas DRUMETZ, Pierre COMON

Gipsa-lab Université Grenoble Alpes

November 11th, 2023

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000

Table of Contents

1 Introduction

- 2 Related Works
- 3 MultiHU-TD
 - Algorithmic Implementation
 - Interpretability: Tensor-based Unmixing, ASC, and ELMM
 - Third-mode feature examples
- 4 Experimental Discussion
 - Experimental Setup
 - Experimental Validation

5 Conclusion

Introduction ●000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000

Introduction

Introduction O●OOOOO	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000

Introduction

Hyperspectral Images (HSI)

A Hyperspectral image (HSI) consists of a third-order arrangement of grayscale images.

ntroduction 00●0000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000

Classical (matrix-based) Hyperspectral Unmixing

Linear Mixing Model (LMM)

- Blind separation of the materials of a scene into abundance maps and endmembers
- **Linear Mixing Model**: $\boldsymbol{m}_{i,:}^{\mathsf{T}} = \sum_{r=1}^{R} a_{ir} \boldsymbol{b}_{:,r}^{\mathsf{T}} \iff \boldsymbol{M} = \boldsymbol{A} \boldsymbol{B}^{\mathsf{T}}$, with the constraints:
 - **•** Nonnegativity: $\boldsymbol{A} \succeq 0, \ \boldsymbol{B} \succeq 0$
 - Abundance Sum-to-one Constraints (ASC): $\sum_{r=1}^{R} a_{ir} = 1$

Introduction 000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000
Motivation				

Motivation

- Enhancing feature extraction in HSI unmixing with additional features.
- 2 Conservation of the multi-feature multi-modal arrangement of data as tensors.
- 3 Low-rank representation of the data.
- Incorporating the Abundance Sum-to-one Constraint (ASC) in tensor decomposition.
- 5 Flexibility of imposing constraints on each mode separately.
- 6 Lack of a generalized and interpretable framework for such applications.

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000

Proposal

In this work ...

- We propose "MultiHU-TD", an interpretable methodological framework for low-rank "Multi-feature Hyperspectral Unmixing based on Tensor Decomposition".
- "MultiHU-TD" is based on the Canonical Polyadic decomposition (CPD) and incorporates the Abundance Sum-to-one Constraint (ASC).
- **3** We provide mathematical, physical and graphical **interpretation** of the extracted features.
- 4 We provide **analogies** with the classical matrix-based spectral unmixing of HSIs.

Introduction 00000●0	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000

Canonical Polyadic Decomposition (CPD)

Tucker Form

- CPD reveals the tensor rank, usually denoted by R, which is the minimum number of terms for the CPD to hold exact.
- For feature extraction, columns with different indices should not interact.

Introduction 000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000

Canonical Polyadic Decomposition (CPD)

Sum of Rank-1 Terms

The CPD of a rank-*R* tensor can be written as follows:

$$\mathcal{T} = \sum_{r=1}^{R} \lambda_{rrr} \left(\boldsymbol{a}_{:,r} \otimes \boldsymbol{b}_{:,r} \otimes \boldsymbol{c}_{:,r} \right) = \sum_{r=1}^{R} \lambda_{rrr} \left(\boldsymbol{\mathcal{D}}_{r} \right)$$
(1)

■ Then, \mathcal{D}_r is an *N*-th order tensor which represents the composition of the physical properties defined by the vectors composing it, good for **material extraction**.

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000

Related Works

Introduction	Related Works	MultiHU-TD	Experimental Discussion	Conclusion
0000000	O●O	000000		0000

From Multi-feature HSI Supervised Classification... [Jouni et al. 2020]

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000	
From Matrix-based Spectral Unmixing					

Extended LMM [Drumetz et al. 2016]

Extended LMM (ELMM) deals with pixel-wise spectral variability. For instance:

$$\mathbf{m}_i = \sum_{r=1}^R a_{ir} \mathbf{f}_i(\mathbf{b}_r) = \sum_{r=1}^R a_{ir} \mathbf{b}_r^{(i)} = \sum_{r=1}^R a_{ir} \psi_{ir} \mathbf{b}_r$$

We are interested in ELMM since it shares a lot of similarities with CPD.

Introduction 0000000	Related Works	MultiHU-TD ●○○○○○	Experimental Discussion	Conclusion 0000

MultiHU-TD

Introduction 0000000	Related Works	MultiHU-TD ○●○○○○	Experimental Discussion	Conclusion 0000
Algorithmic Implementation				

AO-ADMM-ASC with Nonnegativity and Sparsity

Cost Function

In CPD, we impose nonnegativity on all factor matrices, and sparsity and ASC on the abundances. The optimization problem is to solve the cost function:

$$\underset{\boldsymbol{A},\boldsymbol{B},\boldsymbol{C}}{\operatorname{argmin}} \|\boldsymbol{\mathcal{T}} - \boldsymbol{\Lambda}_{1} \bullet \boldsymbol{A}_{2} \boldsymbol{B} \bullet_{3} \boldsymbol{C} \|_{F}^{2} + \alpha \|\boldsymbol{A}\|_{1}$$

s.t. $\boldsymbol{A} \succeq 0, \ \boldsymbol{B} \succeq 0, \ \boldsymbol{C} \succeq 0, \ \sum_{r=1}^{R} a_{i,r} = 1 \mid_{\forall i \in \{1,\ldots,l\}}$ (2)

For the **ASC** solution, set the (J + 1)-th lateral slice and row vector of T and **B** as follows:

■ $T_{:,J+1,K} = \delta \mathbf{1}_{l}$, i.e., $t_{i,J+1,K} = \delta$ $\forall i \in \{1, ..., l\}$ ■ $b_{J+1,r} = \delta c_{K,r}^{-1}$, $\forall r \in \{1, ..., R\}$,

which ensures that $\sum_{r=1}^{R} a_{i,r} = 1 \quad \forall i \in \{1, \dots, I\}.$

Using AO-ADMM [Huang et al. 2016], the problem boils down to an alternating optimization of ADMM subproblems with respect to the factor matrices. For instance, with respect to A:

$$\boldsymbol{A} = \underset{\boldsymbol{A}}{\operatorname{argmin}} \frac{1}{2} \| \tilde{\boldsymbol{T}}_{(1)} - \tilde{\boldsymbol{W}}_{(\boldsymbol{A})} \boldsymbol{A}^{\mathsf{T}} \|_{F}^{2} + \alpha \| \boldsymbol{A} \|_{1} \quad \text{s.t.} \quad \boldsymbol{A} \succeq 0$$
(3)

where $\tilde{\boldsymbol{W}}_{(A)} = \tilde{\boldsymbol{B}} \odot \boldsymbol{C}$ represents the Khatri-Rao product [Comon. 2014].

Introduction 0000000 Related Wor

MultiHU-TD ○○●0○○ Experimental Discussio

Conclusion

Interpretability: Tensor-based Unmixing, ASC, and ELMM

Interpretability: Tensor-based ELMM

CPD and ELMM analogies

CPD describes frontal slice-based spectral variability:

$$\boldsymbol{T}_{:,:,k} = \boldsymbol{A} \operatorname{Diag} \{ \boldsymbol{c}_{k,:} \} \boldsymbol{B}^{\mathsf{T}} = \boldsymbol{A} \boldsymbol{\Psi}_{(k)} \boldsymbol{B}^{\mathsf{T}} = \boldsymbol{A} \tilde{f}_{k} (\boldsymbol{B})^{\mathsf{T}} \iff$$

$$t_{i,:,k} = \sum_{r=1}^{R} a_{ir} c_{kr} b_r = \sum_{r=1}^{R} a_{ir} f_k(b_r) = \sum_{r=1}^{R} a_{ir} b_r^{(k)}$$

ELMM describes pixel-based spectral variability:

$$m_i = \sum_{r=1}^R a_{ir} \psi_{ir} b_r = \sum_{r=1}^R a_{ir} f_i(b_r) = \sum_{r=1}^R a_{ir} b_r^{(i)}$$

 Introduction
 Related Works
 MultiHU-TD
 Experimental Discussion
 Conclusion

 000000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <

Interpretability: Tensor-based ASC

MultiHU-TD: Generalized Interpretation

- The frontal slices have common factors A and B.
- Each frontal slice can be represented as a simplex. The vertices are formed at the columns of **B**^(k).
- A and **B** are independent of the third-mode differences in the hyperspectral scene along the slices:

$$\boldsymbol{M}^{(\mathrm{CPD})} = \boldsymbol{A} \boldsymbol{B}^{\mathsf{T}}$$
(4)

The rows of *C* encode the third-mode variabilities, as *A* and *B* factorize the abundance and spectral features.

000000	000	000000	00000	0000
Introduction	Related Works	MultiHU-TD	Experimental Discussion	Conclusion

Patches and Mathematical Morphology

Original Third-order HSI

Patch-HSI Tensor

An illustration of constructing a 5 \times 5 Patch-HSI tensors based on [Veganzones et al. 2016]

Introduction 0000000	Related Works	MultiHU-TD ○○○○○	Experimental Discussion	Conclusion 0000	
Third-mode feature examples					

Geometric Interpretation of the Decomposed Factors

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000

Experimental Discussion

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000
Experimental Setup				
Real HSI Dat	a Sets ¹			

HSI Data Sets

- We use two real HSIs for testing, composed of a landscape of buildings, streets and vegetation of different materials and sizes.
 - Pavia University (on the left), with dimensions $610 \times 340 \times 103$.
 - Urban (on the right), with dimensions $307 \times 307 \times 162$.

¹We also test this framework using a synthetic HSI. The details are in the paper appendix.

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000
Experimental Validation				

LMM (NMF) vs MultiHU-TD (Rank-4 AO-ADMM-ASC)

Qualitative Evaluation

- LMM does not highlight all the features.
- MultiHU-TD with MM better highlights the features (shadow, asphalt, etc).

A ₁ =Trees		A2=Bare soil		A3=Metal sheets		A4=Shadow		
SAD=5.63	- 25	SAD=18.72	- 25	SAD=15.2	- 25	SAD=25.49	_	
	2	C // -			2.5			
1.10	2	A LANG	2	- W 1 19	2			2
I FAR A								
	1.5		1.5		1.5			1.3
AL-IV	1	Charles and the	1	ALE: L	1			1
1.10		11/10/20						
	0.5		0.5		0.5			0.5
	0		0		0			0
		(a)	Compo	nents of A				
		0.25	-		В.			
				-	_B2			
		3 0.2		~ -	- В,			
		0.15			-B ₄			
		2 ···· 1	\backslash	1./				
		i∰ 0.1 / \	X	10				
		Ë \	$/ \setminus$					
		Z 0.05	· .	X				
			\searrow					
		0	50	100				
		:	Spectral	Band				
		(b)	Compo	nents of B				

Pavia. NMF results with ASC

 Trees
 Bare Soil
 Metal Sheets
 Shadow

 LMM
 5.63
 18.72
 15.2
 25.49

 MultiHU-TD
 6.28
 7.95
 17.67
 7.12*

Table: Spectral Angular Distance (SAD), in degrees

MM-HSI NCPD results for R = 4

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion
Experimental Validation				

Patches vs MM Features with R = 4

Qualitative Evaluation

- Patch MultiHU-TD "replicates" some features.
- MM MultiHU-TD highlights features based on morphological properties (scale, brightness).

Patch-HSI NCPD results for R = 4

	Trees	Bare Soil	Metal Sheets	Gravel*
Patches	7.97	6.57	11.37	6.57*
ММ	6.28	7.95	17.67	7.12*

Table: Spectral Angular Distance (SAD), in degrees

MM-HSI NCPD results for R = 4

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 0000
Experimental Validation				

A_=Trees

A_=Trees

Patches vs MM Features with R = 8

Patch-HSI NCPD results for R = 8

A_=Gravel

A,=Metal sheets

NCPD results with ASC imposed

Introduction	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion •ooo

Conclusion

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion O●OO

General Conclusions

Conclusions

- We proposed MultiHU-TD, a generalized and interpretable framework for multi-feature HSIs using tensor decomposition.
- We incorporated Abundance Sum-to-one Constraints in a tensor-based multi-feature blind source separation problem.
- MultiHU-TD conserves the low-rankness of the data by rearranging the modes of pixels. Incorporating spatial information as features conserves the relevant neighborhood information without losing the multi-modal data structure.

We discussed the methodological and applicative aspects of multi-feature unmixing by:

- Establishing mathematical, graphical, and geometrical analogies between matrix- and tensor-based source separation, and between the physical LMM and CPD.
- Stressing the importance of using physically meaningful features (such as MM)

Introduction 0000000	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion 00●0

Perspectives

Perspectives

- Subspace representations of the factor matrices
- Exploring other types of tensor decomposition such as Block Term Decomposition
- Exploring other types of multi-feature representations of HSIs
- Semi-supervised classification
- Extend the study to multivariate function representations as tensors

Where to go from here?

- Subspace Learning of latent spaces
- Machine Learning for tensor analysis
- Tensor Networks for big multi-modal HSI representations

Introduction	Related Works	MultiHU-TD 000000	Experimental Discussion	Conclusion
Thanks!				

Thank you for your attention!

Example: Tensor vs Matrix Analysis

Figure: Example of the difference between matrix and tensor techniques given the same data set and physical component

Example: Patch-HSI and MM-HSI Tensors

Physical Interpretation

Patch-HSI Tensors: The frontal slices are slightly-shifted versions of each others.
 MM-HSI Tensors: The frontal slices represent physical spatial features.

Pavia HSI: Mathematical Morphology [Jouni et al. 2020]