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Introduction

Hyperspectral Images (HSI)
= A Hyperspectral image (HSI) consists of a third-order arrangement of grayscale images.

Fourth-order HSI
(Two feature modes)

Third-order HSI
(One feature mode)
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Classical (matrix-based) Hyperspectral Unmixing

Linear Mixing Model (LMM)
= Blind separation of the materials of a scene into abundance maps and endmembers
= Linear Mixing Model: m] = > a,b, <= M= AB", with the constraints:

m Nonnegativity: A > 0, B> 0
m Abundance Sum-to-one Constraints (ASC): f’:1 ar =1
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Motivation

Motivati

Enhancing feature extraction in HSI unmixing with additional features.

Conservation of the multi-feature multi-modal arrangement of data as tensors.
Low-rank representation of the data.

A Incorporating the Abundance Sum-to-one Constraint (ASC) in tensor decomposition.
Flexibility of imposing constraints on each mode separately.

[ Lack of a generalized and interpretable framework for such applications.
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Proposal

In this work...

]

-~ |

We propose “MultiHU-TD”, an interpretable methodological framework for low-rank
“Multi-feature Hyperspectral Unmixing based on Tensor Decomposition”.

“MultiHU-TD” is based on the Canonical Polyadic decomposition (CPD) and incorporates
the Abundance Sum-to-one Constraint (ASC).

We provide mathematical, physical and graphical interpretation of the extracted features.
We provide analogies with the classical matrix-based spectral unmixing of HSlIs.
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Canonical Polyadic Decomposition (CPD)

m CPD reveals the tensor rank, usually denoted by R, which is the minimum number of terms

for the CPD to hold exact.
m For feature extraction, columns with different indices should not interact.

— a, b, c,
2,
. T = A o, A o, B o, C
2
: Core ) Third
H Tensor Second Factor
= Factor
A/:‘hinl
Second Mode First
Mode Factor
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\ ) \ Y ) \ Y )
Data Tensor Contains a diagonal Due to the diagonal nature of A, only columns with the
of scalars same index r can interact
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Canonical Polyadic Decomposition (CPD)

Sum of Rank-1 Terms

= The CPD of a rank-R tensor can be written as follows:

R R
T = ka(a:,r(@b-.r@c:,r)=Z>\rrr( ) (1)
r=1 r=1
= Then, is an N-th order tensor which represents the composition of the physical properties

defined by the vectors composing it, good for material extraction.

First Mode

A‘hird
Second Mode 15t Decor

Mode Tensor: T

Data Tensor Sum of Decomposable Terms D,.
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From Multi-feature HSI Supervised Classification... [Jouni et al. 2020]

Third-order HSI

A,=Trees A,=Metal sheets
SAD=6.28 \ SAD=17.67 SAD=7.12

Normalized Radiance
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From Matrix-based Spectral Unmixing...

Extended LMM [Drumetz et al. 2016]

= Extended LMM (ELMM) deals with pixel-wise spectral variability. For instance:
mj = 25:1 aj fi(br) = Zﬁ:1 a/’rby) = 211 ajrpirbr
u We are interested in ELMM since it shares a lot of similarities with CPD.
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Algorithmic Implementation

AO-ADMM-ASC with Nonnegativity and Sparsity

Cost Function

= In CPD, we impose nonnegativity on all factor matrices, and sparsity and ASC on the
abundances. The optimization problem is to solve the cost function:

argmin |7 — I\:A;B; Cl% + al/Alls

A.B.C
R (2)
st.A=0, B=0, C=0, Zai,r:1 [viegt,....1y

r=1

m For the ASC solution, set the (J + 1)-th lateral slice and row vector of 7~ and B as follows:

[ | T;yJ+1’K:51/, i.e., ti1J+1yK:6 Vi e {1,...,/}
B by, =dcc, VYre{l,...,R},
which ensures that 7 . a;, =1 Vie {1,...,[}.

= Using AO-ADMM [Huang et al. 2016], the problem boils down to an alternating optimization of
ADMM subproblems with respect to the factor matrices. For instance, with respect to A:

[ -
A = argmin || ;) - WA + al|Al; st A=0 @3)
A

where W 4 = B ® C represents the Khatri-Rao product [Comon. 2014].
(A)
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Interpretability: Tensor-based Unmixing, ASC, and ELMM

Interpretability: Tensor-based ELMM

CPD and ELMM analogies

= CPD describes frontal slice-based spectral variability:
T..x = ADiag{cy, . }B' = AWy B = A%(B) —
t...=5F 4 —_ R4 _ R 4 pk)
ik = >oreq @irCirbr =370, air f(br) = >°,14 apby
= ELMM describes pixel-based spectral variability:
mi =S apibr = S a fi(by) = S, ai bl
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Interpretability: Tensor-based Unmixing, ASC, and ELMM

Interpretability: Tensor-based ASC

= The frontal slices have common factors A and B.
m Each frontal slice can be represented as a simplex. The vertices are formed at the columns of B,
= A and B are independent of the third-mode differences in the hyperspectral scene along the slices:
M(CPD) — a7 )

m The rows of C encode the third-mode variabilities, as A and B factorize the abundance and spectral features.
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Third-mode feature examples

Patches and Mathematical Morphology
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An illustration of constructing a 5 x 5 Patch-HSI tensors based on [Veganzones et al. 2016]
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An illustration of constructing a MM-HSI tensors based on [Jouni et al. 2020]
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Third-mode feature examples

MultiHU-TD

Geometric Interpretation of the Decomposed Factors
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Experimental Setup

Real HSI Data Sets!

HSI Data Sets

m We use two real HSIs for testing, composed of a landscape of buildings, streets and
vegetation of different materials and sizes.

m Pavia University (on the left), with dimensions 610 x 340 x 103.
m Urban (on the right), with dimensions 307 x 307 x 162.

—— Asphalt

Normalized Radiance

0 20 40 60 80 100
Spectral Band

Figures: Pavia HSI in false colors and its spatial groundtruth (GT)

TWe also test this framework using a synthetic HSI. The details are in the paper appendix.
20/27
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Experimental Validation

LMM (NMF) vs MultiHU-TD (Rank-4 AO-ADMM-ASC)

Trees Bare Soil Metal Sheets Shadow
LMM 5.63 18.72 15.2 25.49
MultiHU-TD 6.28 7.95 17.67 7.42*

ual e Evalua
= LMM does not highlight all the features.

= MultiHU-TD with MM better highlights the
features (shadow, asphalt, etc).

Table: Spectral Angular Distance (SAD), in degrees

A=Metal sheets A,=Shadow A,=Trees A=Metal sheets A =Gravel

SAD=15.2 SAD=25.49 SAD=6.28 SAD=17.67 SAD=7.12
25 25 25 25
2 2 2 2
15 15 15 15
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(b) Components of B (b) Components of B (¢) Components of C
Pavia. NMF results with ASC MM-HSI NCPD results for R = 4
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Experimental Validation

Patches vs MM Features with R = 4

e
alitative Evalua

. . Patches 7.97 6.57 11.37 6.57*
= Patch MultiHU-TD “replicates” some features.

i o MM 6.28 7.95 17.67 7.12*
= MM MultiHU-TD highlights features based on

morphological properties (scale, brightness). Table: Spectral Angular Distance (SAD), in degrees
Ay=Gravel A =Metal sheets A,=Bare soil A,=Trees Ay=Metal sheets. A =Gravel

SAD=7.23 SAD=11.37 SAD=17.67
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(b) Components of B (c) Components of C (b) Components of B (c) Components of C

Patch-HSI NCPD results for R = 4 MM-HSI NCPD results for R = 4
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Experimental Validation

Patches vs MM Features with R = 8

A =Trees
SAD=7.85

A,=Metal sheets
SAD=24.19
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Patch-HSI NCPD results for R = § NCPD results with ASC imposed

23/27



Conclusion
[ Jele]e]

Conclusion

24/27



Conclusion

General Conclusions

Conclusio

= We proposed MultiHU-TD, a generalized and interpretable framework for multi-feature HSIs
using tensor decomposition.

= We incorporated Abundance Sum-to-one Constraints in a tensor-based multi-feature blind
source separation problem.

= MultiHU-TD conserves the low-rankness of the data by rearranging the modes of pixels.
Incorporating spatial information as features conserves the relevant neighborhood
information without losing the multi-modal data structure.

= We discussed the methodological and applicative aspects of multi-feature unmixing by:

m Establishing mathematical, graphical, and geometrical analogies between matrix- and
tensor-based source separation, and between the physical LMM and CPD.
m Stressing the importance of using physically meaningful features (such as MM)
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Perspectives

= Subspace representations of the factor matrices

= Exploring other types of tensor decomposition such as Block Term Decomposition
= Exploring other types of multi-feature representations of HSIs

m Semi-supervised classification

= Extend the study to multivariate function representations as tensors

Where to go from here?

= Subspace Learning of latent spaces
= Machine Learning for tensor analysis
m Tensor Networks for big multi-modal HSI representations
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Thanks!

Thank you for your attention!
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Example: Tensor vs Matrix Analysis
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Figure: Example of the difference between matrix and tensor techniques given the same data set
and physical component
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Example: Patch-HSI and MM-HSI Tensors

Physical Interpretation

= Patch-HSI Tensors: The frontal slices are slightly-shifted versions of each others.
= MM-HSI Tensors: The frontal slices represent physical spatial features.

index k =1 index k =2 index k=3 index k =4 index k =5 index k=6
D N < % < 0y

index k=7 index k = 8
2 S

Pavia HSI: (3 x 3)-Patch

index k = 2 index k = 4 index k=5 index k = 6 index k=7 index k=8 index k =9
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Pavia HSI: Mathematical Morphology [Jouni et al. 2020]
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