
Introduction Related Works MultiHU-TD Experimental Discussion Conclusion

MultiHU-TD: Multifeature Hyperspectral Unmixing Based on
Tensor Decomposition

.

Online Seminar for Tensor Network Reading Group
Montreal Institute for Learning Algorithms (MILA), Quebec, Canada

Mohamad JOUNI
.

Co-authors: Mauro DALLA MURA, Lucas DRUMETZ, Pierre COMON

Gipsa-lab
Université Grenoble Alpes

November 11th, 2023

1 / 27



Introduction Related Works MultiHU-TD Experimental Discussion Conclusion

Table of Contents

1 Introduction

2 Related Works

3 MultiHU-TD
Algorithmic Implementation
Interpretability: Tensor-based Unmixing, ASC, and ELMM
Third-mode feature examples

4 Experimental Discussion
Experimental Setup
Experimental Validation

5 Conclusion

2 / 27



Introduction Related Works MultiHU-TD Experimental Discussion Conclusion

Introduction

3 / 27



Introduction Related Works MultiHU-TD Experimental Discussion Conclusion

Introduction

Hyperspectral Images (HSI)

A Hyperspectral image (HSI) consists of a third-order arrangement of grayscale images.
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Classical (matrix-based) Hyperspectral Unmixing

Linear Mixing Model (LMM)

Blind separation of the materials of a scene into abundance maps and endmembers

Linear Mixing Model: mT
i,: =

∑R
r=1 air bT

:,r ⇐⇒ M = ABT, with the constraints:

Nonnegativity: A ⪰ 0, B ⪰ 0
Abundance Sum-to-one Constraints (ASC):

∑R
r=1 air = 1

Simplex representation of
two pixels between

endmembers 5 / 27
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Motivation

Motivation

1 Enhancing feature extraction in HSI unmixing with additional features.

2 Conservation of the multi-feature multi-modal arrangement of data as tensors.

3 Low-rank representation of the data.

4 Incorporating the Abundance Sum-to-one Constraint (ASC) in tensor decomposition.

5 Flexibility of imposing constraints on each mode separately.

6 Lack of a generalized and interpretable framework for such applications.
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Proposal

In this work...

1 We propose “MultiHU-TD”, an interpretable methodological framework for low-rank
“Multi-feature Hyperspectral Unmixing based on Tensor Decomposition”.

2 “MultiHU-TD” is based on the Canonical Polyadic decomposition (CPD) and incorporates
the Abundance Sum-to-one Constraint (ASC).

3 We provide mathematical, physical and graphical interpretation of the extracted features.

4 We provide analogies with the classical matrix-based spectral unmixing of HSIs.
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Canonical Polyadic Decomposition (CPD)

Tucker Form

CPD reveals the tensor rank, usually denoted by R, which is the minimum number of terms
for the CPD to hold exact.

For feature extraction, columns with different indices should not interact.
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Canonical Polyadic Decomposition (CPD)

Sum of Rank-1 Terms

The CPD of a rank-R tensor can be written as follows:

T =
R∑

r=1

λrrr (a:,r ⊗ b:,r ⊗ c:,r ) =
R∑

r=1

λrrr (Dr ) (1)

Then, Dr is an N-th order tensor which represents the composition of the physical properties
defined by the vectors composing it, good for material extraction.
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Related Works
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From Multi-feature HSI Supervised Classification... [Jouni et al. 2020]
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From Matrix-based Spectral Unmixing...

Extended LMM [Drumetz et al. 2016]

Extended LMM (ELMM) deals with pixel-wise spectral variability. For instance:

mi =
∑R

r=1 air f i (br ) =
∑R

r=1 air b(i)
r =

∑R
r=1 airψir br

We are interested in ELMM since it shares a lot of similarities with CPD.

ELMM: Simplex representation of two pixels
between scaled versions of the endmembers
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MultiHU-TD
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Algorithmic Implementation

AO-ADMM-ASC with Nonnegativity and Sparsity

Cost Function

In CPD, we impose nonnegativity on all factor matrices, and sparsity and ASC on the
abundances. The optimization problem is to solve the cost function:

argmin
A,B,C

∥T − Λ •
1

A •
2

B •
3

C∥2
F + α∥A∥1

s.t. A ⪰ 0, B ⪰ 0, C ⪰ 0,
R∑

r=1

ai,r = 1 |∀i∈{1,...,I}

(2)

For the ASC solution, set the (J + 1)-th lateral slice and row vector of T and B as follows:
T :,J+1,K = δ1I , i.e., ti,J+1,K = δ ∀i ∈ {1, . . . , I}
bJ+1,r = δc−1

K ,r ∀r ∈ {1, . . . , R},

which ensures that
∑R

r=1 ai,r = 1 ∀i ∈ {1, . . . , I}.

Using AO-ADMM [Huang et al. 2016], the problem boils down to an alternating optimization of
ADMM subproblems with respect to the factor matrices. For instance, with respect to A:

A = argmin
A

1
2
∥T̃ (1) − W̃ (A)A

T∥2
F + α∥A∥1 s.t. A ⪰ 0 (3)

where W̃ (A) = B̃ ⊙ C represents the Khatri-Rao product [Comon. 2014].
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Interpretability: Tensor-based Unmixing, ASC, and ELMM

Interpretability: Tensor-based ELMM

CPD and ELMM analogies

CPD describes frontal slice-based spectral variability:

T :,:,k = A Diag{ck,:}BT = A Ψ(k) BT = A f̃k (B)T ⇐⇒

t i,:,k =
∑R

r=1 air ckr br =
∑R

r=1 air fk (br ) =
∑R

r=1 air b
(k)
r

ELMM describes pixel-based spectral variability:

mi =
∑R

r=1 airψir br =
∑R

r=1 air fi (br ) =
∑R

r=1 air b
(i)
r
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Interpretability: Tensor-based Unmixing, ASC, and ELMM

Interpretability: Tensor-based ASC

MultiHU-TD: Generalized Interpretation

The frontal slices have common factors A and B.

Each frontal slice can be represented as a simplex. The vertices are formed at the columns of B(k) .

A and B are independent of the third-mode differences in the hyperspectral scene along the slices:

M(CPD) = A BT (4)

The rows of C encode the third-mode variabilities, as A and B factorize the abundance and spectral features.

MultiHU-TD: There are K simplexes (as
many as the frontal slices). 16 / 27
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Third-mode feature examples

Patches and Mathematical Morphology

An illustration of constructing a 5 × 5 Patch-HSI tensors based on [Veganzones et al. 2016]

An illustration of constructing a MM-HSI tensors based on [Jouni et al. 2020]
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Third-mode feature examples

Geometric Interpretation of the Decomposed Factors

Patches Mathematical Morphology
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Experimental Discussion
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Experimental Setup

Real HSI Data Sets1

HSI Data Sets

We use two real HSIs for testing, composed of a landscape of buildings, streets and
vegetation of different materials and sizes.

Pavia University (on the left), with dimensions 610 × 340 × 103.
Urban (on the right), with dimensions 307 × 307 × 162.

Figures: Pavia HSI in false colors and its spatial groundtruth (GT)

1We also test this framework using a synthetic HSI. The details are in the paper appendix.
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Experimental Validation

LMM (NMF) vs MultiHU-TD (Rank-4 AO-ADMM-ASC)

Qualitative Evaluation
LMM does not highlight all the features.

MultiHU-TD with MM better highlights the
features (shadow, asphalt, etc).

Trees Bare Soil Metal Sheets Shadow

LMM 5.63 18.72 15.2 25.49

MultiHU-TD 6.28 7.95 17.67 7.12*

Table: Spectral Angular Distance (SAD), in degrees
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Experimental Validation

Patches vs MM Features with R = 4

Qualitative Evaluation
Patch MultiHU-TD “replicates” some features.

MM MultiHU-TD highlights features based on
morphological properties (scale, brightness).

Trees Bare Soil Metal Sheets Gravel*

Patches 7.97 6.57 11.37 6.57*

MM 6.28 7.95 17.67 7.12*

Table: Spectral Angular Distance (SAD), in degrees

22 / 27



Introduction Related Works MultiHU-TD Experimental Discussion Conclusion

Experimental Validation

Patches vs MM Features with R = 8
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Conclusion
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General Conclusions

Conclusions

We proposed MultiHU-TD, a generalized and interpretable framework for multi-feature HSIs
using tensor decomposition.

We incorporated Abundance Sum-to-one Constraints in a tensor-based multi-feature blind
source separation problem.

MultiHU-TD conserves the low-rankness of the data by rearranging the modes of pixels.
Incorporating spatial information as features conserves the relevant neighborhood
information without losing the multi-modal data structure.

We discussed the methodological and applicative aspects of multi-feature unmixing by:

Establishing mathematical, graphical, and geometrical analogies between matrix- and
tensor-based source separation, and between the physical LMM and CPD.
Stressing the importance of using physically meaningful features (such as MM)
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Perspectives

Perspectives

Subspace representations of the factor matrices

Exploring other types of tensor decomposition such as Block Term Decomposition

Exploring other types of multi-feature representations of HSIs

Semi-supervised classification

Extend the study to multivariate function representations as tensors

Where to go from here?

Subspace Learning of latent spaces

Machine Learning for tensor analysis

Tensor Networks for big multi-modal HSI representations
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Thanks!

Thank you for your attention!
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Example: Tensor vs Matrix Analysis

Figure: Example of the difference between matrix and tensor techniques given the same data set
and physical component
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Example: Patch-HSI and MM-HSI Tensors

Physical Interpretation

Patch-HSI Tensors: The frontal slices are slightly-shifted versions of each others.

MM-HSI Tensors: The frontal slices represent physical spatial features.

Pavia HSI: (3 × 3)-Patch

Pavia HSI: Mathematical Morphology [Jouni et al. 2020]
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