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Quantum Computing

▶ Quantum mechanical systems of size n described by state vector of dimension
exp (n), classical systems ∼ n

▶ Simulating dynamics of generic quantum systems probably difficult for traditional
computers
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Quantum Computing

▶ Quantum system dynamics can also solve (certain) hard “classical” problems!
▶ Dynamics can be digitized: quantum computation
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Quantum Computing Today

▶ Today: have quantum devices sampling from complex distributions1

▶ One day: quantum generative models?

1F. Arute et al., Nature 574, 505; M. Endres et al., Science 354, 1024.
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Quantum Machine Learning (QML)

▶ Many quantum generative models have been shown to be more expressive than
their classical counterparts:
▶ Quantum Boltzmann machines vs. classical restricted Boltzmann machines2…
▶ Quantum GANs vs. GANs3…
▶ …etc.

▶ Proof strategy?

2N. Wiebe et al., arXiv:1902.05162 [quant-ph].
3S. Lloyd and C. Weedbrook, Phys. Rev. Lett. 121, 040502.
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Quantum Machine Learning (QML)

▶ Typical proof of separation:
1. QML models can factor large numbers

2. Factoring large numbers is probably hard using traditional computers
3. QED :)

▶ What data should we use QML models for?

¯\_(ツ)_/¯
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Quantum Machine Learning (QML)
▶ Goal: concrete, constructive proofs of expressivity separations between traditional

and quantum(-inspired) generative models
▶ Interpretability gives:

▶ Intuition where separation holds
▶ Intuition how to construct better ML models
▶ Intuition on trainability…

▶ (…more on this later)
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We show…

1. There exist distributions easy for matrix product states to sample from, but
difficult for certain Bayesian networks (superpolynomial memory separation)

2. This separation is due to (simulating) a type of quantum mechanical correlation
(quantum contextuality)

3. Extensions to neural networks as well!
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Outline

Bayesian Networks and Basis-Enhanced Bayesian Networks

Main Result

Quantum Contextuality

Extensions to Neural Networks
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Bayesian Networks

▶ “Machine learning before machine learning was cool”
▶ Directed acyclic graphical models that encode structure in underlying probability

distribution
▶ Depending on graph structure, fewer parameters needed to describe model
▶ Depending on graph structure, efficiently trainable
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Bayesian Networks

▶ Example (yi ∈ {0, . . . , d − 1}):

p (y1, y2, y3, y4) = p1 (y1) p2 (y2 | y1) p3 (y3 | y1, y2) p4 (y4 | y3) (1)

▶ Corresponding graphical model:
y1

y2

y3y4
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Bayesian Tensor Networks

▶ Rewrite as tensor network with nonnegative entries:

p (y1, y2, y3, y4) =

⟨0| U(1)⊺ |y1⟩ ⟨y1| U(1) |0⟩

⟨0| T(2)⊺ |y2⟩ ⟨y2| T(2) |0⟩

⟨0| T(3)⊺ |y3⟩ ⟨y3| T(3) |0⟩

⟨0| T(4)⊺ |y4⟩ ⟨y4| T(4) |0⟩

▶ ⟨0| = (1, 0, . . . , 0), |0⟩ = ⟨0|⊺

▶ |a⟩ ⟨a| =
(
1 at (a, a)

)
(d × d projector)

▶ (a, 0) entry of U(1):
√

p1 (a) (d × d orthogonal)
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Bayesian Tensor Networks

▶ Uniformly controlled gates

T
=

d−1∑
a=0

|a⟩ ⟨a| ⊗ Ta

T

=
d−1∑

a,b=0

|a⟩ ⟨a| ⊗ |b⟩ ⟨b| ⊗ Ta,b

▶ (c, 0) entry of T(i)
a,b:

√
pi (c | a, b) (d × d orthogonal)
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Bayesian Quantum Circuits4

▶ Throughout talk: will write in “quantum circuit notation”
|0⟩ U(1)  y1

|0⟩ T(2)  y2

|0⟩ T(3)  y3

|0⟩ T(4)  y4

4G. H. Low et al., Phys. Rev. A 89, 062315.
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https://doi.org/10.1103/PhysRevA.89.062315


Bayesian Quantum Circuits

▶ Generally, a quantum circuit is a Bayesian quantum circuit iff:
1. It is composed of single-node unitaries and uniformly controlled gates, where there is

one target node for each gate (directed graph)
2. There are no unitaries after control units on a node (acyclic)
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Basis-Enhanced Bayesian Networks

▶ “Minimal quantum extension” of Bayesian quantum circuits
▶ Example:

|0⟩ U(1) V(1)  y1

|0⟩ T(2) V(2)  y2

|0⟩ T(3) V(3)  y3

|0⟩ T(4) V(4)  y4

▶ V(i) unitary, only acting on a single node
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Basis-Enhanced Bayesian Quantum Circuits

▶ Generally, a quantum circuit is a basis-enhanced Bayesian quantum circuit iff:
1. It is composed of single-node unitaries and uniformly controlled gates, where there is

one target node for each gate (directed graph)
2. There are no target unitaries after control units on a node (acyclic) (i.e., local

noncomputational basis measurements are allowed)
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Outline

Bayesian Networks and Basis-Enhanced Bayesian Networks

Main Result

Quantum Contextuality

Extensions to Neural Networks
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Hidden Markov Models for Translation

▶ Given input sequence x, give any correct translation y

▶ Example:
My name is Eric.

Me llamo Eric. −→
I call myself Eric.

▶ In math terms: achieve a finite forward perplexity/KL divergence/relative entropy
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Hidden Markov Models (HMMs)

▶ HMM: assume latent variable λ,

p
(
λt | x, y, λ̂t

)
= p (λt | xt, λt−1) , (3)

p (yt | x, ŷt,λ) = p (yt | λt) (4)
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Basis-Enhanced HMM
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▶ Note: basis-enhanced HMM has an efficient MPS representation!
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Advantage in Basis-Enhanced Hidden Markov Models

Theorem
There exists a family of basis-enhanced HMMs with M states per time step that, to be
approximated to finite KL divergence by a classical hidden Markov model, requires
M�(log(M)) hidden states per time step.
▶ There exist distributions with efficient MPS representations (bond dimension M2)

but no efficient HMM representation!
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Quantum Contextuality

▶ Properties of a quantum mechanical system have no definite value
▶ Nobel Prize in Physics awarded for experimental demonstration of this just last

year!
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Example of Quantum Contextuality

▶ Quantum mechanics: can construct “quantum variables” (q-numbers) such that:

q11 × q12 × q13 = +1
× × ×

q21 × q22 × q23 = +1
× × ×

q31 × q32 × q33 = +1
q q q
+1 +1 −1

▶ Can classical variable assignments do this?
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Example of Quantum Contextuality

▶ Classical attempt:

1 × 1 × 1 = +1
× × ×
1 × 1 × 1 = +1
× × ×
1 × 1 × 1 = +1
q q q
+1 +1 +1
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Example of Quantum Contextuality

1 × 1 × 1 = +1
× × ×
1 × 1 × 1 = +1
× × ×
1 × 1 × q33 = +1
q q q
+1 +1 −1

▶ Value of q33 depends on if accessed with variables in row or in column
▶ Quantum mechanics allows context-dependent values for variables with no

memory overhead!
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Sketch of Basis-Enhanced Bayesian Advantage Proof
▶ Idea: construct translation task where:

▶ x describes q-numbers
▶ y are values of q-numbers when measured sequentially in a quantum mechanical

system of size V
▶ Basis-enhanced HMM (MPS) with bond dimension ∼ M can simulate these

measurements when V ∼ log (M) (“phase estimation”)

1 4

3 6

(a)

2

4
2

3

1

5

6

4

(b) (c)
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Sketch of Basis-Enhanced Bayesian Advantage Proof

▶ Classically: require a hidden state in HMM to represent any given context
▶ Required memory H using classical HMM:

H ≥ # of contexts ≥ # inputs
# number of inputs per context (5)

𝜆1

supp(| ⟩)𝜓1

𝜆2
𝜆3

supp(| ⟩)𝜓2
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Sketch of Basis-Enhanced Bayesian Advantage Proof

▶ ∃ a quantum system of size V with q-numbers such that:

# inputs ∼ 2V2/2 (6)
# number of inputs per context ∼ 2V2/4 (7)

▶ =⇒ H ≳ 2V2/4 ≳ Mlog(M) □

▶ We show:
▶ Consider inputs describing the sequential measurement of V commuting V-qubit

Pauli operators (∼ 2V2/2)
▶ Show every ∼ 2V2/4 have at least 9 comprising a Mermin–Peres magic square
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Takeaways

▶ Quantum(-inspired) models can efficiently store long-range correlations through
quantum contexts

▶ Search for practical separations in data with long-range correlations
▶ Is this true for other quantum(-inspired) models?

▶ (Yes)
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Why Does Interpretability Matter?

▶ Why does interpretability matter?
▶ Quantum neural networks5:

. 

. 

.
.   .   .

. 

. 

.

1

2

3

n

n+1

5E. Farhi and H. Neven, arXiv:1802.06002 [quant-ph].
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Why Does Interpretability Matter?
▶ Generically: QNNs untrainable6

▶ Expressivity ↔ Trainability
▶ Solution: want minimal quantum neural network achieving a quantum advantage
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underparameterized l < 2m

overparameterized l = 2m

6ERA, ICLR 2022; ERA and B. T. Kiani, Nat. Commun. 13, 7760.
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Extensions to Neural Networks

▶ Construct “minimal” quantum neural network exhibiting contextuality =⇒

Theorem (Neural network expressivity separation7, informal)
Classical neural networks∗ of memory less than n(n−3)

2

†
cannot accurately perform a

certain translation task that a trainable quantum RNN of size n can perfectly perform.

▶ Separation tight: ∼ n2-size quantum-inspired classical model can achieve this

▶ ∗Includes: RNNs, LSTMs, GRUs, Transformers, …
▶ †In progress: ∼ nk separation

7ERA et al., PRX Quantum 4, 020338.
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Simulations on Real-World Translation Tasks
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Future Directions

▶ Ways to a priori evaluate data to see if amenable to quantum(-inspired)
representation?

▶ How ubiquitous is separation on sequence data with long-range correlations?
▶ Do our results give a useful quantum-inspired classical neural network?
▶ How amenable are these architectures to experimental implementation?
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Questions?

Thank you!
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