Office of Science

Randomized Leverage Score Sampling and CP Decomposition at Scale

Vivek Bharadwaj ${ }^{1}$, Osman Asif Malik ${ }^{2}$, Riley Murray ${ }^{3,2,1}$, Laura Grigori ${ }^{4}$, Aydın Buluç ${ }^{2,1}$, James Demmel ${ }^{1}$

${ }^{1}$ Electrical Engineering and Computer Science Department, UC Berkeley
${ }^{2}$ Computational Research Division, Lawrence Berkeley National Lab
${ }^{3}$ International Computer Science Institute
${ }^{4}$ Institute of Mathematics, EPFL \& Lab for Simulation and Modelling, Paul Scherrer Institute

Introduction

The Berkeley BeBOP and PASSION Groups

I am affiliated with two groups at UC Berkeley:

- The Berkeley Benchmarking and Optimization (BeBOP) group led by James Demmel and Katherine Yelick.
- The Parallel Algorithms for Scalable Sparse computatIONs (PASSION) group led by Aydın Buluç, joint with Lawrence Berkeley National Lab.

Our interests include randomized algorithms and sparse computations that can be parallelized and deployed at supercomputer scale.

Figure 1: Frontier, the first exascale supercomputer in the United States. Credit: OLCF, Wikimedia Commons CC2.0.

Topics We Will Cover

Today, we will cover two works that use randomization to accelerate sparse tensor CP decomposition. This is a condensed version of my qualifying exam talk, online at:
https://vivek-bharadwaj.com/pdf/2024/qual_slides.pdf.

1. Sketching linear least-squares problems in sparse Candecomp / PARAFAC (Neurips'23; [BhMMGBD23]).
2. Distributed-memory randomized CP methods (Preprint, Arxiv; [BhMMBD23]).

These works are collaborations with Osman Asif Malik, who spoke last week.

Fast Exact Leverage Score Sampling from Khatri-Rao
 Products

The Khatri-Rao Product

- The Khatri-Rao product (KRP, denoted \odot) is the column-wise Kronecker product of two matrices:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \odot\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
a w & b x \\
c w & d x \\
a y & b z \\
c y & d z
\end{array}\right]
$$

- Our goal: efficiently solve an overdetermined linear least-squares problem

$$
\min _{X}\|A X-B\|_{F}
$$

where $A=U_{1} \odot \ldots \odot U_{N}$ with $U_{j} \in \mathbb{R}^{I_{j} \times R}$.

Motivating Application

This least-squares problem is the computational bottleneck in alternating least-squares Candecomp / PARAFAC (CP) decomposition [KB09].

Figure 2: Subregion of Amazon sparse tensor and illustrated CP decomposition.
Focus on large sparse tensors (mode sizes in the millions) and moderate decomposition rank $R \approx 10^{2}$. Assume $I_{j}=I$ for all j and $I \geq R$.

Randomized Linear Least-Squares

- Sketch \& Solve: Apply short-wide sketching matrix S to both A and B, solve reduced problem

$$
\min _{\tilde{X}}\|S A \tilde{X}-S B\|_{F}
$$

- Want an (ε, δ) guarantee on solution quality: with high probability $(1-\delta)$,

$$
\|A \tilde{X}-B\|_{F} \leq(1+\varepsilon) \min _{X}\|A X-B\|
$$

- Restrict S to be a sampling matrix: selects and reweights rows from A and B. How do we downsample a Khatri-Rao product accurately AND efficently?

Effect of Sampling Operator, Sparse Tensor Decomposition

$$
\min _{U_{j}}\left\|\left[\bigodot_{k \neq j} U_{k}\right] \cdot U_{j}^{\top}-\operatorname{mat}(\mathcal{T}, j)^{\top}\right\|_{F}
$$

Our Contributions [BhMMGBD23]

Method	Source	Round Complexity (Õ notation)
CP-ALS	$[$ KB009 $]$	$N(N+I) I^{N-1} R$
CP-ARLS-LEV	$[$ LK22 $]$	$N(R+I) R^{N} /(\varepsilon \delta)$
TNS-CP	$[$ Mal22]	$N^{3} I R^{3} /(\varepsilon \delta)$
GTNE	$[$ MS22	$N^{2}\left(N^{1.5} R^{3.5} / \varepsilon^{3}+I R^{2}\right) / \varepsilon^{2}$
STS-CP	Ours	$N\left(N R^{3} \log I+I R^{2}\right) /(\varepsilon \delta)$

- We build a data structure with runtime logarithmic in the height of the KRP and quadratic in R to sample from leverage scores of A.
- Yields the STS-CP algorithm: lower asymptotic runtime for randomized dense CP decomposition than recent SOTA methods (and even greater advantages for sparse tensors).

Leverage Score Sampling

We will sample rows i.i.d. from A according to the leverage score distribution on its rows. Given reduced SVD $A=U \Sigma V^{\top}$, the leverage score ℓ_{i} of row i is

$$
\ell_{i}=\|U[i,:]\|^{2} .
$$

Theorem (Leverage Score Sampling Guarantees, [Mal22])

Suppose $S \in \mathbb{R}^{J \times I}$ is a leverage-score sampling matrix for $A \in \mathbb{R}^{I \times R}$, and define

$$
\tilde{X}:=\arg \min _{\tilde{X}}\|S A \tilde{X}-S B\|_{F}
$$

If $J \gtrsim R \max (\log (R / \delta), 1 /(\varepsilon \delta))$, then with probability at least $1-\delta$,

$$
\|A \tilde{X}-B\|_{F} \leq(1+\varepsilon) \min _{X}\|A X-B\|_{F} .
$$

Interpretation of Leverage Scores

When A has 1 column, leverage scores are proportional to squared distance from origin.

Figure 3: A univariate regression problem with low and high leverage points (intercept constrained to be 0).

Interpretation of Leverage Scores

In general, leverage scores of A quantify influence that each row has on the solution, capture correlation of rows of A with rows of $\Sigma^{-1} V^{\top}$.

Figure 4: Leverage scores of $(x, y, 0)$ triples from a multivariate normal distribution. Left: components of $\Sigma^{-1} V^{\top}$ shown. Right: the red point has greater influence than the blue point (both equidistant from $(0,0)$).

Interpretation of Leverage Scores

- Leverage score sampling captures the geometry of the column space of A.
- Rigorously: sampling i.i.d. with leverage score probabilities leads to an optimal [DM20] sample complexity to construct an ℓ_{2}-subspace embedding matrix S. W.h.p simultaneously for ALL vectors $x \in \mathbb{R}^{R}$,

$$
(1-\tilde{\varepsilon})\|A x\|_{2} \leq\|S A x\|_{2} \leq(1+\tilde{\varepsilon})\|A x\|_{2}
$$

- In turn, an ℓ_{2}-S.E. guarantees that our sketched solution has close-to-optimal residual with respect to the original problem.

Prior Work

Problem: Cost to compute all leverage scores exactly is identical to runtime of QR decomposition. Defeats the purpose of sampling!

- (SPALS [Che+16]): Sample rows according to approximate leverage scores of A. Worst-case exponential in N to achieve (ε, δ) guarantee.
- (CP-ARLS-LEV [LK22]): Similar approximation, hybrid random-deterministic sampling strategy and practical improvements.
- (TNS-CP [Mal22]): Samples implicitly from exact leverage distribution with polynomial complexity to achieve (ε, δ) guarantee, but linear dependence on I for each sample. We want to accelerate this algorithm.

Implicit Leverage Score Sampling

- For $I=10^{7}, N=3$, matrix A has 10^{21} rows. Can't even index rows with 64-bit integers. Instead: use identity $\ell_{i}=A[i,:]\left(A^{\top} A\right)^{+} A[i,:]^{\top}$.
- Draw a row from each of U_{1}, \ldots, U_{N}, return their Hadamard product.

- Let \widehat{s}_{j} be a random variable for the row index drawn from U_{j}. Assume $\left(\hat{s}_{1}, \ldots, \hat{s}_{N}\right)$ jointly follows the leverage score distribution on $U_{1} \odot \ldots \odot U_{N}$.

The Conditional Distribution of \widehat{s}_{k}

Theorem

$$
p\left(\hat{s}_{k}=s_{k} \mid \hat{s}_{<k}=s_{<k}\right) \propto\left\langle h_{<k} h_{<k}^{\top}, U_{k}\left[s_{k},:\right]^{\top} U_{k}\left[s_{k},:\right], G_{>k}\right\rangle
$$

Key Sampling Primitive

$$
q[i]:=C^{-1}\left\langle h_{<k} h_{<k}^{\top}, U_{k}[i,:]^{\top} U_{k}[i,:], G_{>k}\right\rangle
$$

- Can't compute q entirely - would cost $O\left(I R^{2}\right)$ per sample per mode.
- Imagine we magically had all entries of q-how to sample? Initialize I bins, j 'th has width $q[j]$.
- Choose random real r in $[0,1]$, find "containing bin" i such that

$$
\sum_{j=0}^{i-1} q[j]<r<\sum_{j=0}^{i} q[j]
$$

Binary Tree Inversion Sampling

- Locate bin via binary search (truncated to $\log (I / R)$ levels)
- Root: branch right iff $\sum_{j=0}^{I / 2} q[j]<r$
- Level 2: branch right iff

$$
\sum_{j=0}^{I / 2} q[j]+\sum_{j=I / 2}^{3 I / 4} q[j]<r
$$

Key: Can compute summations quickly if we cache information at each node!

Caching Partial Gram Matrices

Let an internal node v correspond to an interval of rows $[S(v) \ldots E(v)]$.

$$
\begin{align*}
\sum_{j=S(v)}^{E(v)} q[j] & =\sum_{j=S(v)}^{E(v)} C^{-1}\left\langle h_{<k} h_{<k}^{\top}, U_{k}[j,:]^{\top} U_{k}[j,:], G_{>k}\right\rangle \\
& =C^{-1}\left\langle h_{<k} h_{<k}^{\top}, \sum_{j=S(v)}^{E(v)} U_{k}[j,:]^{\top} U_{k}[j,:], G_{>k}\right\rangle \tag{1}\\
& =C^{-1}\left\langle h_{<k} h_{<k}^{\top}, U_{k}[S(v): E(v),:]^{\top} U_{k}[S(v): E(v),:], G_{>k}\right\rangle \\
& :=C^{-1}\left\langle h_{<k} h_{<k}^{\top}, G^{v}, G_{>k}\right\rangle
\end{align*}
$$

Can compute and store G^{v} for ALL nodes v in time $O\left(I R^{2}\right)$, storage space $O(I R)$. Use BLAS-3 syrk calls in parallel to efficiently construct the tree.

Efficient Sampling after Caching

- At internal nodes, compute $C^{-1}\left\langle h_{<k} h_{<k}^{\top}, G^{v}, G_{>k}\right\rangle$ in $O\left(R^{2}\right)$ time (read normalization constant from root)
- At leaves, spend $O\left(R^{3}\right)$ time to compute remaining values of q. Can reduce to $O\left(R^{2} \log R\right)$, see paper.
- Complexity per sample: $O\left(N R^{2} \log I\right)$ (summed over all tensor modes).

High-Performance Parallel Sampling, Approach 1

- We want to execute $J \sim 50,000$ independent random walks down a full, complete tree. At each node, execute a matrix-vector multiplication to decide which direction to branch.
- Approach 1: Assign a thread team to execute random walks
 independently. Proudly parallel, no data races.

High-Performance Parallel Sampling, Approach 2

- Issues: irregular memory access pattern on CPU, not optimal for a single GPU thread to execute a BLAS call.
- Approach 2: March down the tree one level at a time, computing the branches of ALL random walks with
 a batched GEMV / GEMM.

Runtime Benchmarks (LBNL Perlmutter CPU)

Figure 5: Time to construct sampler and draw $J=65,536$ samples. C++ Implementation Linked to OpenBLAS. 1 Node, 128 OpenMP Threads, BLAS3 Construction, BLAS2 Sampling.

Distortion, Ours vs. Approximate Leverage Score Sampling

The distortion $D(S, A)$ of sketch S with respect to matrix A is given by

$$
D(S, A)=\frac{\kappa(S Q)-1}{\kappa(S Q)+1}
$$

where Q is any orthonormal basis for the column space of A [Mur+23]. Distortion quantifies the distance preservation property of a sketch.

Figure 6: Sketch distortion as a function of KRP matrix count N and column count $R, J=65,536$. Green: our sampler. Blue: product approximation by [LK22].

Accuracy Comparison for Fixed Sample Count

STS-CP Makes Faster Progress to Solution

Figure 8: Fit vs. ALS update time, Reddit tensor, $R=100$.

Takeaways: Faster Leverage Score Sampling from Khatri-Rao Products

- We accelerated sampling from the Khatri-Rao product by devising a novel data structure and a high-performance implementation.
- We demonstrated convincing speedups and accuracy benefits over CP-ARLS-LEV [LK22], an algorithm that approximates the leverage scores.
- Up next: distributed-memory formulations of both our algorithm and CP-ARLS-LEV.

High-Performance Randomized CP Decomposition at Scale

Sparse Tensors from FROSTT

Tensor	Dimensions	NNZ
Uber	$183 \times 24 \times 1.1 K \times 1.7 K$	$3.3 M$
Amazon	$4.8 M \times 1.8 M \times 1.8 M$	$1.7 B$
Patents	$46 \times 239 K \times 239 K$	$3.6 B$
Reddit	$8.2 M \times 177 K \times 8.1 M$	$4.7 B$

- Sparse tensors may have billions of nonzero entries, mode sizes in the tens of millions [Smi+17].
- Randomized algorithms okay in shared-memory, but existing codes cannot compete with classic distributed-memory implementations [Smi+15; Kan+12].

Our Contributions [BhMMBD23]

- We give high-performance implementations of STS-CP and CP-ARLS-LEV scaling to thousands of CPU cores.
- Up to 11x speedup over SPLATT.
- Several communication / computation optimizations unique to randomized CP decomposition.

Figure 9: Accuracy vs. time, Reddit tensor, $R=100,512$ cores / 4 Perlmutter CPU nodes, 4.7 billion nonzeros.

Methodology

- We distribute STS-CP and CP-ARLS-LEV [LK22] with very distinct communication / computation patterns, each with varying time / accuracy tradeoffs.
- We tailor the communication schedule to randomized CP decomposition to eliminate Reduce-scatter collectives, achieving better load balance in the process.
- We use a hybrid of CSC format for nonzero lookups and CSR format to enable race-free thread parallelism. Key primitive: sparse transpose.

Factor and Sparse Matrix Layout

- Processors arranged in a hypercube.
- Factor matrices U_{1}, \ldots, U_{N} distributed by block rows. Assume that all processors redundantly compute $U_{j}^{\top} U_{j}$ for all j (product is gram matrix G of A).
- Each processor owns a block of the sparse tensor. Randomly permute modes to

| $\mathbf{1}$ | 2 | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{3}$ | 4 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | load-balance.

Bulk-Synchronous Randomized ALS Update

1. Sampling and All-gather: Sample rows of $U_{\neq j}$, Allgather the rows to processors who require them.
2. Local Computation: Extract the corresponding nonzeros from the local tensor, execute the downsampled MTTKRP.
3. Reduction and Postprocessing: Reduce the accumulator of the sparse-dense matrix multiplication across processors, if necessary, and post-process the factor.

Distribution of Distinct Sampling Algorithms

Sampler	Compute	Messages	Words Communicated
d-CP-ARLS-LEV	$J N / P$	P	P
d-STS-CP	$J R^{2} \log I / P$	$P \log P$	$J R \log P / P$

- CP-ARLS-LEV approximates the leverage scores with lower computation / communication overhead. Accuracy degrades at high rank.
- STS-CP samples from the exact leverage score distribution, requiring higher sampling time.
- Problem: How to sample when factors distributed by block rows?

d-CP-ARLS-LEV

- Key Idea: Approximate the leverage scores of A by the product of leverage scores on each factor matrix U_{i}.
- Let $U_{i}^{\left(p_{j}\right)}$ be the block row of U_{i} owned by processor p_{j}. Leverages scores of this block given by

$$
\operatorname{diag}\left(U_{i}^{\left(p_{j}\right)} G^{+} U_{i}^{\left(p_{j}\right) \top}\right)
$$

- Computed locally on each processor without communication. Sampling requires (in expectation) only a small constant number of words communicated.
- Drawback: Accuracy degrades for high N or R.

d-STS-CP

- Samples from exact leverage score distribution by sampling from each of U_{1}, \ldots, U_{N} in sequence (excluding U_{j}).
- Execute random walk on binary tree to find the row index for each U_{j}. Node v caches "partial Gram matrix" G^{v}.
- At each node, compute $h^{\top} G^{v} h$ (where h is
 unique to each sample) to decide whether to branch left / right.

d-STS-CP Parallelization Scheme

Randomization-Tailored Communication Schedule

Tensor Stationary MTTKRP

Accumulator Stationary MTTKRP

All-gather Downsampled MatrixReduce-Scatter
Redistribute Downsampled TensorStationary

Schedule	Words Communicated/Round
Non-Randomized TS	$2 N R\left(\prod_{k=1}^{N} I_{k} / P\right)^{1 / N}$
Sampled TS	$N R\left(\prod_{k=1}^{N} I_{k} / P\right)^{1 / N}$
Sampled AS	$J R N(N-1)$

Speedup and Scaling on Large Sparse Tensors

(a) Speedup

(b) Strong Scaling, $R=25$

Figure 10: Speedup over SPLATT and strong scaling for our randomized algorithms.

Comparison of Communication Schedules

Figure 11: Runtime breakdown for tensor-stationary vs. accumulator-stationary communication schedules.

Takeaways: Distributed-Memory Randomized CP Algorithms

- We proposed the first distributed-memory implementation of two sampling-based, sparse CP algorithms.
- We optimized our algorithms to avoid communication in both the sampling and MTTKRP phases.
- Our method scales to thousands of CPU cores with significant speedups over existing SOTA sparse tensor decomposition software.

Questions? View slides, other material on my website:
https://vivek-bharadwaj.com

References i

[BhMMBD23] Vivek Bharadwaj, Osman Asif Malik, Riley Murray, Aydin Buluç, and James Demmel. Distributed-Memory Randomized Algorithms for Sparse Tensor CP Decomposition. 2023. arXiv: 2210.05105 [math.NA].
[BhMMGBD23] Vivek Bharadwaj, Osman Asif Malik, Riley Murray, Laura Grigori, Aydın Buluç, and James Demmel. "Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition". In: Thirty-seventh Conference on Neural Information Processing Systems. Dec. 2023.
[Che+16] Dehua Cheng, Richard Peng, Yan Liu, and loakeim Perros. "SPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling". In: Advances in Neural Information Processing Systems. Vol. 29. Curran Associates, Inc., 2016.
[DKM06] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. "Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication". In: SIAM Journal on Computing 36.1 (2006), pp. 132-157. doi: 10.1137/S0097539704442684.

References if

[DM20]	Michal Derezinski and Michael W. Mahoney. "Determinantal Point Processes in Randomized Numerical Linear Algebra". In: CoRR abs/2005.03185 (2020). arXiv: 2005.03185.
[Kan+12]	U. Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. "GigaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries". In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. KDD '12. New York, NY, USA: Association for Computing Machinery, Aug. 2012, pp. 316-324. isbn: 978-1-4503-1462-6.
[KB09]	Tamara G. Kolda and Brett W. Bader. "Tensor Decompositions and Applications". In: SIAM Review 51.3 (Aug. 2009). Publisher: Society for Industrial and Applied Mathematics, pp. 455-500. issn: 0036-1445. doi: 10.1137/07070111X.
[LK22]	Brett W. Larsen and Tamara G. Kolda. "Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition". In: SIAM Journal on Matrix Analysis and Applications 43.3 (2022), pp. 1488-1517.

References ifi

[Mal22]	Osman Asif Malik. "More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees". In: Proceedings of the 39th International Conference on Machine Learning. Vol. 162. Proceedings of Machine Learning Research. PMLR, July 2022, pp. 14887-14917
[Min+23]	Rachel Minster, Irina Viviano, Xiaotian Liu, and Grey Ballard. "CP decomposition for tensors via alternating least squares with QR decomposition". In: Numerical Linear Algebra with Applications 30.6 (2023), e2511. doi: https://doi.org/10.1002/nla. 2511.
[MS22]	Linjian Ma and Edgar Solomonik. "Cost-efficient Gaussian tensor network embeddings for tensor-structured inputs". In: Advances in Neural Information Processing Systems. Vol. 35. Curran Associates, Inc., 2022, pp. 38980-38993.
[Mur+23]	Riley Murray, James Demmel, Michael W. Mahoney, N. Benjamin Erichson, Maksim Melnichenko, Osman Asif Malik, Laura Grigori, Piotr Luszczek, Michal Derezinski, Miles E. Lopes, Tianyu Liang, Hengrui Luo, and Jack Dongarra. Randomized Numerical Linear Algebra: A Perspective on the Field With an Eye to Software. Tech. rep. UCB/EECS-2023-19. EECS Department, University of California, Berkeley, Feb. 2023.

References iv

[Smi+15]	Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George Karypis. "SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication". In: 2015 IEEE
	International Parallel and Distributed Processing Symposium. ISSN: 1530-2075. May
2015, pp. 61-70.	

Backup Slides, Deck 1: Fast
 Khatri-Rao Product Leverage Score Sampling

Leverage Score Sampling Proof Sketch

Theorem (Structural Conditions for LSTSQ, [DKM06])

Let Q be a basis for the column-space of A. Suppose that a sketching matrix S satisfies the following two deterministic structural conditions:

- (S1) Approximate Isometry: $\sigma_{\text {min }}(S Q) \geq 1 / \sqrt{2}$
- (S2) Minimal Junk: $\left\|Q^{\top} S^{\top} S B^{\perp}\right\|_{F}^{2} \leq \varepsilon\left\|B^{\perp}\right\|_{F}^{2} / 2$

Then the sketched solution \tilde{X} satisfies

$$
\|A \tilde{X}-B\|_{F} \leq(1+\varepsilon) \min _{X}\|A X-B\|_{F} .
$$

Main Proof Idea: Show, with probability $\geq(1-\delta)$, that a leverage score sketch satisfies these two conditions.

Leverage Score Sampling Proof Sketch

- (S1) holds by the well-known ℓ_{2}-subspace embedding property of leverage score sketches [Woo14], with probability $\geq 1-\delta / 2$ for high enough sample count.
- (S2) holds by an approximate matrix-multiplication argument [DKM06] (with one-sided information) with probability $\geq 1-\delta / 2$.

$$
\begin{aligned}
\left\|Q^{\top} S^{\top} S B^{\perp}\right\|_{F}^{2} & =\left\|\mathbf{0}-Q^{\top} S^{\top} S B^{\perp}\right\|_{F}^{2} \\
& =\left\|Q^{\top} B^{\perp}-Q^{\top} S^{\top} S B^{\perp}\right\|_{F}^{2}
\end{aligned}
$$

- Use a union bound to guarantee that both hold with probability $\geq 1-\delta$. Will sketch the proof of (S1).

Leverage Score Sampling Gives an ℓ_{2}-SE Proof Sketch

Proof follows a version by David Woodruff (we adapt it to our notation and drop the β parameter). Let $A=Q \Sigma V^{\top}$; we need a matrix Chernoff result.

Theorem (Matrix Chernoff, [Woo14])

Let X_{1}, \ldots, X_{J} be independent copies of a symmetric random matrix $X \in \mathbb{R}^{R \times R}$ satisfying

1. $E[X]=0$,
2. $\|X\|_{2} \leq \gamma$,
3. $\left\|E\left[X^{\top} X\right]\right\|_{2} \leq T \leq J^{2}$.

Let $W=\frac{1}{J} \sum_{i=1}^{J} X_{i}$. Then for any $\tilde{\varepsilon}>0$,

$$
\operatorname{Pr}\left[\|W\|_{2}>\tilde{\varepsilon}\right] \leq 2 R \exp \left(-J \tilde{\varepsilon}^{2} /(2 T+2 \gamma \tilde{\varepsilon} / 3)\right)
$$

Leverage Score Sampling Gives an ℓ_{2}-SE Proof Sketch

Want to show, for appropriate parameters J, γ, ε, that $\frac{1}{\sqrt{2}} \leq \sigma_{i}^{2}(S U)$ w.h.p. $(1-\delta)$. Let $z_{i}=(S U)_{i:}^{\top}, q_{j}=Q_{j}^{\top}$ and choose

$$
\begin{gathered}
p_{j}:=\ell_{j} / R \quad \forall j \\
X_{i}:=I-z_{i} z_{i}^{\top} / p_{i} \\
\gamma:=1+R \\
\tilde{\epsilon}:=1-1 / \sqrt{2} \\
T:=R-1
\end{gathered}
$$

Easy to verify that $\mathrm{E}[X]=0$, need to check conditions (2) and (3) of the Chernoff bound.

Leverage Score Sampling Gives an ℓ_{2}-SE

Condition 2: $\|X\|_{2} \leq \gamma$ implies $\max _{j \in[I]}\left\|I-\frac{q_{j} q_{j}^{\top}}{p_{j}}\right\| \leq \gamma$. For any j, we have

$$
\begin{aligned}
\left\|I-\frac{q_{j} q_{j}^{\top}}{p_{j}}\right\|_{2} & \leq\|I\|_{2}+\left\|\frac{q_{j} q_{j}^{\top}}{p_{j}}\right\|_{2} \\
& =1+\frac{R\left\|q_{j} q_{j}^{\top}\right\|_{2}}{\left\|q_{j}\right\|_{2}^{2}} \\
& =1+R \\
& =\gamma
\end{aligned}
$$

Crucially, this choice for p_{j} allows the minimal choice $1+R$ for γ.

Leverage Score Sampling Gives an ℓ_{2}-SE

Condition 3: We derive

$$
\begin{aligned}
\mathrm{E}\left[X^{\top} X\right] & =\sum_{j=1}^{I} p_{j}\left(I-q_{j} q_{j}^{\top} / p_{j}\right)\left(I-q_{j} q_{j}^{\top} / p_{j}\right) \\
& =\sum_{j=1}^{I} p_{j} I-2 \sum_{j=1}^{I} p_{j} q_{j} q_{j}^{\top} / p_{j}+\sum_{j=1}^{I} \frac{p_{j} q_{j} q_{j}^{\top} q_{j} q_{j}^{\top}}{p_{j}^{2}} \\
& =I-2 I+\sum_{j=1}^{I} \frac{q_{j} q_{j}^{\top} q_{j} q_{j}^{\top}}{p_{j}} \\
& =I-2 I+\sum_{j=1}^{I} R q_{j} q_{j}^{\top} \\
& =(R-1) I
\end{aligned}
$$

So $\left\|\mathrm{E}\left[X^{\top} X\right]\right\|_{2}=R-1 \leq J^{2}$.

Leverage Score Sampling Gives an ℓ_{2}-SE

Evaluating the Chernoff guarnatee, we ignore $\tilde{\epsilon}$ since it is a constant. We want

$$
\begin{aligned}
\exp \left(-J \tilde{\varepsilon}^{2} /(2 T+2 \gamma \tilde{\varepsilon} / 3)\right) & \leq \delta \\
J /(2 R+2 R / 3)) & \geq \Omega\left(\log \frac{R}{\delta}\right)
\end{aligned}
$$

Setting $J=\Omega\left(R \log \frac{R}{\delta}\right)$ causes the failure probability to fall below the threshold.

The Normal Equations in Tensor Decomposition

- The normal equations are widely used for ALS CP decomposition [KB09] despite squaring the condition number.
- QR decomposition of a KRP is more difficult to compute (but only slightly) [Min+23]:

$$
\begin{align*}
A & :=U_{1} \odot \ldots \odot U_{N} \\
& =\left(Q_{1} R_{1}\right) \odot \ldots \odot\left(Q_{N} R_{N}\right) \tag{2}\\
& =\left(Q_{1} \otimes \ldots \otimes Q_{N}\right) \cdot\left(R_{1} \odot \ldots \odot R_{N}\right) \\
& =\left(Q_{1} \otimes \ldots \otimes Q_{N}\right) \cdot Q_{\text {tail }} \cdot R_{\text {tail }}
\end{align*}
$$

- QR formulation useful for lower-precision decomposition, adversarial tensors [Min+23], e.g. $\sin \left(x_{1}+\ldots+x_{N}\right)$.

Why Don't We Use the QR Formulation?

- QR Decomposition not useful for leverage score sampling. R^{N} samples required to sketch $Q_{1} \otimes \ldots \otimes Q_{N}$, computation of $Q_{\text {tail }}$ introduces exponential cost in N.
- Leverage score computation robust to numerical error (just take slightly more samples).
- For our applications, we can sacrifice some accuracy.

Backup Slides, Deck 2:

Randomized Distributed CP

Decomposition

d-STS-CP Parallelization Scheme

- Matrices G^{v} replicated $\log P$ times. Each processor stores data on path from leaf to root.
- Initialization: Each sample assigned arbitrarily to a processor (along with corresponding sample vectors h).
- At Each Node: Branching decision made for each sample, Alltoallv computed to reorganize sample vectors.
- Drawback: Repeated Alltoallv calls are expensive!

Non-Randomized Communication Analysis

- Let processor grid dimensions be $P_{1} \times \ldots \times P_{N}$.
- All-gather + Reduce-Scatter Costs:

$$
2 \sum_{k=1}^{N} I R / P_{k}
$$

Tensor Stationary MTTKRP

$$
\frac{2 N R I}{P^{1 / N}}
$$

All-gather Matrix

$$
\text { Redistribute Downsampled Tensor } \quad \square \text { Stationary }
$$

- Cost Under Optimal Grid:

Downsampled Tensor-Stationary MTTKRP

- Reduce-scatter cost is unchanged by sampling.
- Minimum communication:

$$
\frac{N R I}{P^{1 / N}}
$$

- Drops at most a constant factor compared to non-randomized ALS

Tensor Stationary MTTKRP

All-gather Downsampled Matrix Reduce-Scatter

Redistribute Downsampled Tensor
Stationary

Downsampled Accumulator-Stationary MTTKRP

- Eliminate reduce-scatter by gathering sampled rows to all processors, redistributing sampled nonzeros.
- Communication Cost:

$$
J R N(N-1)+\frac{3}{P} \sum_{j=1}^{N} \operatorname{nnz}\left(\operatorname{mat}(\mathcal{T}, j) S_{j}^{\top}\right) .
$$

- Avoid retransmitting nonzeros by storing N different matricizations of the tensor.

Accumulator Stationary MTTKRP
\square All-gather Downsampled MatrixReduce-Scatter

Redistribute Downsampled Tensor

Tensor-Stationary MTTKRP Load Balance

- We use random permutations of each tensor mode to evenly distribute nonzeros \& samples to processors.
- Theoretical model: each sampled column has q nonzeros with row i.i.d. uniform.

- TS Load Balance: J balls into $P^{1-1 / N}$ bins (each ball here is a column).

Accumulator-Stationary MTTKRP Load Balance

- AS Load Balance: $J q$ balls into P bins.
- Here, each ball is a nonzero entry. This distibution has better load

Load Balance

$$
\text { Tensor-Stationary } \quad \text { Accumulator-Stationary }
$$

Figure 12: Load imbalance for tensor-stationary vs. accumulator stationary schedules as a function of MPI rank count.

Local Computation: SpMTTKRP is SpMM

$$
\min _{U_{j}}\left\|\left[\bigodot_{k \neq j} U_{k}\right] \cdot U_{j}^{\top}-\operatorname{mat}(\mathcal{T}, j)^{\top}\right\|_{F}
$$

Matricized Tensor Storage Format

- CSC: Easy to look up nonzeros, but need atomics when accumulating to output buffer (with multiple threads)
- CSR: No data races, but difficult to select nonzeros.
- Solution: Use CSC for lookup, sparse transpose into CSR.

Sampling and Sparse Transpose Operation

Drawback: Need to store N copies of the sparse tensor, but we do this anyway to avoid communication.

Weak Scaling

- Weak scaling for non-randomized CP: increase target rank R and processor count proportionally, measure runtime.
- Problems for Randomized CP:
- Nonzero count selected from sparse tensor varies.
- Need higher sample counts at higher ranks to maintain accuracy.
- Solution: Benchmark STS-CP with fixed sample count to maintain accuracy (as much as possible) for a fixed sample count, measure throughput instead:

$$
\text { Throughput }=\frac{\text { nnz selected in MTTKRP }}{\text { Runtime }}
$$

Experimental Platform

- Experiments conducted on up to 16 nodes / 2048 CPU cores on NERSC Perlmutter at LBNL.
- Hybrid OpenMP / MPI implementation in C++, Python wrappers using Pybind11.
- Baseline : SPLATT, a highly-optimized CP decomposition library.

Figure 13: LBNL PerImutter, an HPE Cray Supercomputer (\#12 on the Nov'23 Top500).

Weak Scaling

Figure 14: Throughput as a function of increasing target rank and node count.

